Abstract
The use of macroalgae (seaweed) as a potential source of biofuels has attracted considerable worldwide interest. Since brown algae, especially the giant kelp, grow very rapidly and contain considerable amounts of polysaccharides, coupled with low lignin content, they represent attractive candidates for bioconversion to ethanol through yeast fermentation processes. In the current study, powdered dried seaweeds (Ascophylum nodosum and Laminaria digitata) were pre-treated with dilute sulphuric acid and hydrolysed with commercially available enzymes to liberate fermentable sugars. Higher sugar concentrations were obtained from L. digitata compared with A. nodosum with glucose and rhamnose being the predominant sugars, respectively, liberated from these seaweeds. Fermentation of the resultant seaweed sugars was performed using two non-conventional yeast strains: Scheffersomyces (Pichia) stipitis and Kluyveromyces marxianus based on their abilities to utilise a wide range of sugars. Although the yields of ethanol were quite low (at around 6 g/L), macroalgal ethanol production was slightly higher using K. marxianus compared with S. stipitis. The results obtained demonstrate the feasibility of obtaining ethanol from brown algae using relatively straightforward bioprocess technology, together with non-conventional yeasts. Conversion efficiency of these non-conventional yeasts could be maximised by operating the fermentation process based on the physiological requirements of the yeasts.
References
[1] Hughes, A. D. Kelly, M. S. Black, K. D. and. Stanley M. S, Biogas from Macroalgae: is it time to revisit the idea? Biotechnol. Biofuels, 2012. 5, 86-93, 10.1186/1754-6834-5-86Search in Google Scholar PubMed PubMed Central
[2] Schiener, P. Black, K. D. Stanley, M. S. and Green, D. H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta, J. Appl. Phycol., 2014, 27, 363–373. 10.1007/s10811-014-0327-1Search in Google Scholar
[3] Adams, J. M. M. T. A. Toop, I. S. Donnison, and J. a. Gallagher, Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels, Bioresour. Technol., 2011, 102, 9976–9984,. 10.1016/j.biortech.2011.08.032Search in Google Scholar PubMed
[4] Goh C. S. and Lee, K. T. A visionary and conceptual macroalgaebased third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development, Renew. Sustain. Energy Rev., 2010, 14, 842–848. 10.1016/j.rser.2009.10.001Search in Google Scholar
[5] Black, W. A. P. The seasonal variation in weight and chemical composition of the common British Laminariaceae, Scottish Seaweed Research Association, 1950, 45-72. 10.1017/S0025315400056186Search in Google Scholar
[6] Adams, J. M. M. Ross, A. B. Anastasakis, K. Hodgson, E. M. Gallagher, J. A.. Jones, J. M and Donnison, I. S. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion, Bioresour. Technol., 2011, 102, 226–234. 10.1016/j.biortech.2010.06.152Search in Google Scholar PubMed
[7] Sung-Soo J. and Wakisaka, M. l-lactic acid production from brown seaweed (Laminaria japonica Areschoug) Extract, J. Biosci. Bioeng., 2009, 108, S133. 10.1016/j.jbiosc.2009.08.387Search in Google Scholar
[8] Wei, N. Quarterman, J. and Jin, Y. S. Marine macroalgae: An untapped resource for producing fuels and chemicals, Trends Biotechnol., 2013, 31, 70–77. 10.1016/j.tibtech.2012.10.009Search in Google Scholar PubMed
[9] Enquist-Newman, M., Faust, A. M. E., Bravo, D. D., Santos, R. M., Raisner, Hanel, A., Sarvabhowman, P., Le, C., Regitsky, D. D., Cooper, S. R., Peereboom, L., Clark, A., Martinez, Y., Goldsmith, J., Cho, M. Y., Donohoue, P. D., Luo, L., Lamberson, B., Tamrakar, P., Kim, E. J., Villari, J. L. , Gill, A., Tripathi, S. A, Karamchedu, P., Paredes, C. J., Rajgarhia, V., Kotlar, H. K., Bailey, R. B., Miller, D. J., Ohler, N. L., Swimmer, C. and Yoshikuni, Y. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform, Nature, 2014, 505, 239–243. 10.1038/nature12771Search in Google Scholar PubMed
[10] Horn, S. J., Aasen, I. M. and Stgaard, K. Ethanol production from seaweed extract, J. Ind. Microbiol. Biotechnol. 2000, 25, 249–254. Search in Google Scholar
[11] Horn, S. J., Aasen, I. M and Stgaard, K. Production of ethanol from mannitol by Zymobacter palmae, J. Ind. Microbiol. Biotechnol. 2000 24, 51–57. Search in Google Scholar
[12] Ross, A. B., Jones, J. M., Kubacki, M. L and Bridgeman, T. Classification of macroalgae as fuel and its thermochemical behaviour, Bioresour. Technol. 2008, 99, 6494–6504. Search in Google Scholar
[13] Aresta, M., Dibenedetto, A and Barberio, G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study, Fuel Process. Technol., 2005, 86, 1679–1693. 10.1016/j.fuproc.2005.01.016Search in Google Scholar
[14] Agarwal, A. K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energy Combust. Sci., 2007, 33, 233–271 10.1016/j.pecs.2006.08.003Search in Google Scholar
[15] Lee, J. Y., Li, P., Lee, J., Ryu, H. J and Oh, K. K. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation, Bioresour. Technol., 2013, 127, 119–125. 10.1016/j.biortech.2012.09.122Search in Google Scholar PubMed
[16] Kumar, S., Gupta, R., Kumar, G., Sahoo, D and Kuhad, R. C. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach, Bioresour. Technol., 2013, 135, 150–156. 10.1016/j.biortech.2012.10.120Search in Google Scholar PubMed
[17] Borines, M. G., de Leon, R. L. and Cuello, J. L. Bioethanol production from the macroalgae Sargassum spp., Bioresour. Technol., 2013, 138, 22–29. 10.1016/j.biortech.2013.03.108Search in Google Scholar PubMed
[18] Kelly, M. S and Dworjanyn, S. The potential of marine biomass for anaerobic biogas production: a feasibility study with recommendations for further reasearch. The Crown Estate, 2008, 103p. Search in Google Scholar
[19] Adams, J. M., Gallagher, J. A and Donnison, I. S. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments, J. Appl. Phycol., 2009, 21, 569–574. 10.1007/s10811-008-9384-7Search in Google Scholar
[20] Daroch, M. Geng, S and Wang, G. Recent advances in liquid biofuel production from algal feedstocks, Appl. Energy, 2013, 102, 1371–1381. 10.1016/j.apenergy.2012.07.031Search in Google Scholar
[21] Yanagisawa, M., Nakamura, K., Ariga, O and Nakasaki, K. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides, Process Biochem., 2011, 46, 2111–2116 10.1016/j.procbio.2011.08.001Search in Google Scholar
[22] Yanagisawa, M., Kawai, S and Murata, K. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds., Bioengineered, 2013, 4, 224–35. 10.4161/bioe.23396Search in Google Scholar PubMed PubMed Central
[23] Walker, G. M. 125th Anniversary Review: Fuel Alcohol: Current Production and Future Challenges, Journal of The Institute of Brewing & Distilling, 2011, 117, 3–22. 10.1002/j.2050-0416.2011.tb00438.xSearch in Google Scholar
[24] Papini, M., Nookaew, I., Uhlén, M and Nielsen, J. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae, Microb. Cell Fact., 2012, 11, 136-152. 10.1186/1475-2859-11-136Search in Google Scholar PubMed PubMed Central
[25] Lane, M. M and Morrissey, J. P. Kluyveromyces marxianus: A yeast emerging from its sister’s shadow, Fungal Biol. Rev., 2010, 24, 17–26. 10.1016/j.fbr.2010.01.001Search in Google Scholar
[26] Pereira, S. R., Sànchez i Nogué, V., Frazão, C. J. R., Serafim, L. S., Gorwa-Grauslund, M. F and Xavier, A. M. R. B. Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering, Biotechnol. Biofuels, 2015, 8, 1–8. 10.1186/s13068-015-0234-ySearch in Google Scholar PubMed PubMed Central
[27] Lertwattanasakul, N., Kosaka, T., Hosoyama, A., Suzuki, Y., Rodrussamee, N., Matsutani, M. Murata, M. Fujimoto, N., Suprayogi, Tsuchikane, K., Limtong, S., Fujita, N and Yamada, M. Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses., Biotechnol. Biofuels, 2015, 8, 47-61. 10.1186/s13068-015-0227-xSearch in Google Scholar PubMed PubMed Central
[28] Löser, C., Urit, T., Gruner, E and Bley, T. Efficient growth of Kluyveromyces marxianus biomass used as a biocatalyst in the sustainable production of ethyl acetate, Energy. Sustain. Soc., 2015, 5, 2-15. 10.1186/s13705-014-0028-2Search in Google Scholar
[29] Cheng, C. C., Yu, M. C., Cheng, T. C., Sheu, D. C., Duan, K. J and Tai, W. L. Production of high-content galacto-oligosaccharide by enzyme catalysis and fermentation with Kluyveromyces marxianus, Biotechnol. Lett., 2006, 28, 793–797. 10.1007/s10529-006-9002-1Search in Google Scholar PubMed
[30] Rouhollah, H., Iraj, N., Giti, E and Sorah, A. Mixed sugar fermentation by Pichia stipitis , Saccharomyces cerevisiae , and an isolated xylose-fermenting Kluyveromyces marxianus and their cocultures, African J. Biotechnol., 2007, 6, 1110–1114. Search in Google Scholar
[31] van der Wal, H., Sperber, B. L. H. M., Houweling-Tan, B., Bakker, R. R. C., Brandenburg, W and López-Contreras, A. M. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca, Bioresour. Technol., 2013, 128, 431–437. 10.1016/j.biortech.2012.10.094Search in Google Scholar PubMed
[32] Rioux, L. E., Turgeon, S. L and Beaulieu, M. Effect of season on the composition of bioactive polysaccharides from the brown seaweed Saccharina longicruris, Phytochemistry, 2009, 70, 1069–1075. 10.1016/j.phytochem.2009.04.020Search in Google Scholar PubMed
[33] Horn, S. J. Bioenergy from brown seaweeds, PhD Thesis, Norwegian University of Science and Technology, Trondheim, Norway. 2000 Search in Google Scholar
[34] Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D and Nrel, J. W. Determination of total solids in biomass and total dissolved solids in liquid process samples, Natl. Renew. Energy Lab., 2008, 3–5. Search in Google Scholar
[35] White, J. S., Yohannan, B. K., and Walker, G. M. Bioconversion of brewer’s spent grains to bioethanol, FEMS Yeast Res., 2008, 8, 1175–1184 10.1111/j.1567-1364.2008.00390.xSearch in Google Scholar PubMed
[36] Borines, M. G., De Leon, R. L., and McHenry, M. P. Bioethanol production from farming non-food macroalgae in Pacific island nations: Chemical constituents, bioethanol yields, and prospective species in the Philippines, Renew. Sustain. Energy Rev., 2011, 15, 4432–4435 10.1016/j.rser.2011.07.109Search in Google Scholar
[37] Moen, E., Horn, S and Østgaard, K. Biological degradation of Ascophyllum nodosum, J. Appl. Phycol., 1997, 9, 347–357. 10.1023/A:1007988712929Search in Google Scholar
[38] Choi, D., Sim, H. S., Piao, Y. L., Ying, W and Cho, H. Sugar production from raw seaweed using the enzyme method, J. Ind. Eng. Chem., 2009, 15, 12–15. 10.1016/j.jiec.2008.08.004Search in Google Scholar
[39] Yeon, J. H., Lee, S. E., Choi, W. Y., Kang, D. H., Lee, H. Y and Jung, K. H. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum, J. Microbiol. Biotechnol., 2011, 21, 323–331. 10.4014/jmb.1010.10057Search in Google Scholar
[40] Kim, N. J., Li, H., Jung, K., Chang, H. N and Lee, P. C. Ethanol production from marine algal hydrolysates using Escherichia coli KO11, Bioresour. Technol., 2011, 102, 7466–7469. 10.1016/j.biortech.2011.04.071Search in Google Scholar PubMed
[41] Trivedi, N. Reddy, C. R. K. Radulovich, R and Jha, B. Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production, Algal Res., 2015, 9, 48–54. 10.1016/j.algal.2015.02.025Search in Google Scholar
[42] Trivedi, N., Gupta, V., Reddy, C. R. K and Jha, B. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile, Bioresour. Technol., 2013, 150, 106–112. 10.1016/j.biortech.2013.09.103Search in Google Scholar PubMed
© 2016 Oluwatosin Obata et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.