Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 29, 2016

Utilization of unripe banana peel waste as feedstock for ethanol production

  • Ashish G. Waghmare and Shalini S. Arya
From the journal Bioethanol

Abstract

Banana is second largest produced fruit of total world’s fruits. Cooking banana or plantains processing industry is generating enormous amount of waste in the form of unripe banana peel at one place, thus important to study waste management and utilization. Therefore, unripe banana peel was investigated for ethanol production. This study involved chemical characterization, optimization of acid hydrolysis, selection of yeast strain and optimization of fermentative production of ethanol from dried unripe banana peel powder (DUBPP). Ethanol concentration was determined using gas chromatography flame ionization detector (GC-FID). Characterization of DUBPP revealed notably amount of starch (41% w/w), cellulose (9.3% w/w) and protein (8.4% w/w). 49.2% w/w of reducing sugar was produced by acid hydrolysis of DUBPP at optimized conditions. Three yeast strains of Saccharomyces cerevisiae were screened for ethanol conversion efficiency, osmotolerance, ethanol tolerance, thermotolerance, fermentation ability at high temperature and sedimentation rate. Further, fermentation conditions were optimized for maximum ethanol production from acid hydrolysate of DUBPP. At optimized fermentation conditions, 35.5 g/l ethanol was produced using selected strain of Saccharomyces cerevisiae NCIM 3095. Hence, unripe banana peel waste can be good feedstock for ethanol production.

References

[1] Food Agriculture Organization of the United Nations, FAOSTAT. Rome, Italy: FAO, 2014. Search in Google Scholar

[2] Sartori T., Menegalli F.C., Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid, Food Hydrocolloid., 2015, 55, 210-219. 10.1016/j.foodhyd.2015.11.018Search in Google Scholar

[3] Giraldo Toro A., Gibert O., Ricci J., Dufour D., Mestres C., Bohuon P., Digestibility prediction of cooked plantain flour as a function of water content and temperature. Carbohydr. Polym., 2015, 118, 257-265. 10.1016/j.carbpol.2014.11.016Search in Google Scholar PubMed

[4] Branca C., Blasi C.D., A lumped kinetic model for banana peel combustion, Thermochim. Acta, 2015, 614, 68-75. 10.1016/j.tca.2015.06.022Search in Google Scholar

[5] Nasidi M., Deeni Y., Agu R., Walker G., Fermentation of stalk juices from different Nigerian sorghum cultivars to ethanol, Bioeth., 2013, 1, 20-27. 10.2478/bioeth-2013-0003Search in Google Scholar

[6] Sanchez O.J., Cardona C.A., Review: Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour. Technol., 2008, 99, 5270-5295. 10.1016/j.biortech.2007.11.013Search in Google Scholar PubMed

[7] Brethauer S., Wyman C.E., Review: Continuous hydrolysis and fermentation for cellulosic ethanol production, Bioresour. Technol., 2010, 101, 4862-4874. 10.1016/j.biortech.2009.11.009Search in Google Scholar PubMed

[8] Muhammad Nasidi M., Agu R., Deeni Y., Giginyu I.B., Walker G., Bioconversion of degraded husked sorghum grains to ethanol, Bioeth., 2015, 2, 1-11. 10.1515/bioeth-2015-0001Search in Google Scholar

[9] Yamashita Y., Sasaki C., Nakamura Y., Effective enzyme saccharification and ethanol production from Japanese cedar using various pre-treatment methods, J. Biosci. Bioeng., 2010, 110, 79-86. 10.1016/j.jbiosc.2009.12.009Search in Google Scholar PubMed

[10] Campo I.D., Alegria I., Zazpe M., Echeverria M., Echeverria I., Diluted acid hydrolysis pre-treatment of agri-food wastes for bio-ethanol production, Ind. Crop. Prod., 2006, 42, 214-221. 10.1016/j.indcrop.2006.06.014Search in Google Scholar

[11] Pramanik K., Rao D.E., Kinetic study on ethanol fermentation of grape waste using Saccharomyces cerevisiae yeast isolated from toddy, IE (I) Journal, 2005, 85, 53-58. Search in Google Scholar

[12] Essien J.P., Akpan E.J., Essien E.P., Studies on mould growth and biomass production using waste banana peel, Bioresour Technol, 2005, 96, 1451-1456. 10.1016/j.biortech.2004.12.004Search in Google Scholar PubMed

[13] Khan N., Roes-Hill M., Welz P.J., Grandin K.A., Kudanga T., Van Dyk J.S., et al., Fruit waste streams in South Africa and their potential role in developing a bio-economy, S. Afr. J. Sci., 2015, 111, 5-16. 10.17159/sajs.2015/20140189Search in Google Scholar

[14] Choia I.S., Leea Y.G., Khanalb S.K., Parkc B.J., Bae H.J., A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production, Appl. Energ., 2015, 140, 65-74. 10.1016/j.apenergy.2014.11.070Search in Google Scholar

[15] Wyman C.E., Twenty years of trials, tribulations, and research progress in bioethanol technology, Appl. Bochem. Biotechnol., 2001, 91, 5-21. 10.1007/978-1-4612-0217-2_1Search in Google Scholar

[16] Hammond J.B., Egg R., Diggins D., Coble C.G., Alcohol from bananas, Bioresour. Technol., 1996, 56, 125-130. 10.1016/0960-8524(95)00177-8Search in Google Scholar

[17] Guneseelan N.V., Biochemical methane potential of fruits and vegetables solid waste feedstocks, Biomass Bioenerg., 2004, 26, 389-399. 10.1016/j.biombioe.2003.08.006Search in Google Scholar

[18] Oberoi HS., Vadlani P.V, Saida L., Bansal S., Hughes J.D., Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process, Waste Manag., 2011, 31(7), 1576-84. 10.1016/j.wasman.2011.02.007Search in Google Scholar

[19] AOAC (Association of Official Analytical Chemists), Official methods of analysis, 16th ed. Washington, 2001. Search in Google Scholar

[20] Miller G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 1956, 31, 426-428. 10.1021/ac60147a030Search in Google Scholar

[21] Branyikova I., Marsalkova B., Doucha J, Branyik T., Bisova K., Zachleder V., Vitova M., Microalgae-novel highly efficient starch producers, Biotechnol. Bioeng., 2011, 108, 766-776. 10.1002/bit.23016Search in Google Scholar

[22] Takeshita T., Ota S., Yamazaki T., Hirata A., Zachleder V., Kawano S., Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions, Bioresour Technol., 2014, 158, 127-34. 10.1016/j.biortech.2014.01.135Search in Google Scholar

[23] Sadasivam S., Manikam A., Biochemical Methods 2nd ed. Chemistry and allied sciences books of new age international limited, New Delhi, India, 2005. Search in Google Scholar

[24] Van Soest P.J., Robertson J.B., Lewis B.A., Method for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition, J. Dairy Sci., 1991, 74, 3583-3597. 10.3168/jds.S0022-0302(91)78551-2Search in Google Scholar

[25] Brooks A.A., Ethanol production potential of local yeast strains isolated from ripe banana peels, Afr. J. Biotechnol., 2008, 7, 3749-3752. Search in Google Scholar

[26] Subashini D., Ejilane J., Radha A., Jayasri M.A., Suthindhiran K., Ethanol production from sago waste using Saccharomyces cerevisiae Vits-M1, Curr. Res. J. Biol. Sci., 2011, 3, 42-51. Search in Google Scholar

[27] Tan L., Sun Z.Y., Okamoto S., Takaki M., Tang Y.Q., Morimura S., Kida, K., Production of ethanol from raw juice and thick juice of sugar beet by continuous ethanol fermentation with flocculating yeast strain KF-7. Biomass Bioenerg, 2015, 81, 265-272. 10.1016/j.biombioe.2015.07.019Search in Google Scholar

[28] Hari Krishna S., Chowdary G.V., Optimization of simultaneous saccharification and fermentation for the production of ethanol from biomass, J. Agr. Food Chem., 2000, 48, 1971-1976. 10.1021/jf991296zSearch in Google Scholar

[29] Fischer C.R., Klein-Marcuschamer D., Stephanopoulos G., Selection and optimization of microbial hosts for bio-fuels production, Metab. Eng., 2008, 10, 295-304. 10.1016/j.ymben.2008.06.009Search in Google Scholar

[30] Wu W.H., Hung W.C., Lo KY., Chen Y.H., Wan H.P., Cheng K.C., Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21, Bioresour. Technol., 2015, 201, 27-32. 10.1016/j.biortech.2015.11.015Search in Google Scholar

[31] Abd-Rahim F., Wasoh H., Zakaria M.R., Ariff A., Kapri R., Ramli N., Siew-Ling L., Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis, Food Hydrocolloid., 2014, 42(2), 309-315. 10.1016/j.foodhyd.2014.05.017Search in Google Scholar

[32] Meinita M.D.N., Hong Y.K., Jeong G.T., Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng., 2012, 35, 123-128. 10.1007/s00449-011-0609-9Search in Google Scholar

[33] Larsson S., Palmqvist E., Hahn-Hagerdal B., Tengeborg C., Stenberg K., Zacchi G., et al. The generation of fermentation inhibitors during dilute acid hydrolysis of soft-wood. Enzyme Microb. Technol., 1999, 24, 151-159. 10.1016/S0141-0229(98)00101-XSearch in Google Scholar

[34] Hahn-Hagerdal B., Galbe M., Gorwa-Grauslund M.F., Liden G., Zacchi G., Bio-ethanol the fuel of tomorrow from the residues of today, Trends Biotechnol., 2006, 24, 12. 10.1016/j.tibtech.2006.10.004Search in Google Scholar

[35] Patle S., Lal B., Investigation of the potential of agro-industrial material as low cost substrate for ethanol production by using Candida tropicalis and Zymomonas mobilis. Biomass Bioenerg., 2008, 32(7), 596-602. 10.1016/j.biombioe.2007.12.008Search in Google Scholar

[36] Sharma S.K., Enzymatic saccharification of pre-treated sunflower stalks, Biomass Bioenerg., 2002, 23, 237-243. 10.1016/S0961-9534(02)00050-8Search in Google Scholar

[37] Ortiz-Zamora O., Cortes-Garcia R., Ramirez-Lepe M., Gomez- Rodriguez J., Aguilar-Uscanga M.G., isolation and selection of ethanol-resistant and osmotolerant yeasts from regional agricultural sources in Mexico, J. Food Process Eng., 2009, 32(5), 775-786. 10.1111/j.1745-4530.2008.00244.xSearch in Google Scholar

[38] Gera R., Dhamija S.S., Gera T., Singh D., Intergeneric ethanol producing hybrids of thermotolerant Kluyveromyces and non-thermotolerant Saccharomyces cerevisiae, Biotechnol Lett., 1997, 19(2), 189-194. Search in Google Scholar

[39] Ge X.M., Zhang L., Bai F.W., Impacts of temperature, pH, divalent cations, sugars and ethanol on the flocculating of SPSC01, Enzyme Microb. Tech., 2006, 39, 783-787. 10.1016/j.enzmictec.2005.12.016Search in Google Scholar

[40] Kiran Sree N., Sridhar M., Suresh K., Banat I.M., Venkateswar Rao L., Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresour Technol., 2000, 72(1), 43-46. 10.1016/S0960-8524(99)90097-4Search in Google Scholar

[41] Konar E.M., Harde S.M., Kagliwal L.D., Singhal R.S., Value-added bioethanol from spent ginger obtained after oleoresin extraction, Ind. Crops Prod., 2013, 42, 299-307. 10.1016/j.indcrop.2012.05.040Search in Google Scholar

[42] Fakruddin M.M., Abdul-Quayum M., Ahmed M., Choudhury N., Analysis of key factors affecting ethanol production by Saccharomyces cerevisiae IFST-072011, Biotechnol., 11, 248-252. 10.3923/biotech.2012.248.252Search in Google Scholar

[43] Joshi J., Enhanced production of ethanol from red potatoes grown in hilly regions of Nepal using various nitrogen sources, Int. J. Appl. Sci. Biotechnol., 2014, 2(1), 41-44. 10.3126/ijasbt.v2i1.9191Search in Google Scholar

Received: 2015-7-27
Accepted: 2016-1-22
Published Online: 2016-6-29

© 2016 Ashish G. Waghmare, Shalini S. Arya

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 23.2.2024 from https://www.degruyter.com/document/doi/10.1515/bioeth-2016-0011/html
Scroll to top button