Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 2, 2014

Genetic and non-genetic determinants of aggression in combat sports

Piotr Gronek, Dariusz Wieliński and Joanna Gronek
From the journal Open Life Sciences

Abstract

Human aggression/impulsivity-related traits are influenced by complex genetic and non-genetic factors. The aggression/anxiety relationship is controlled by highly conserved brain regions including the amygdala, hypothalamus and periaqueductal gray of the midbrain, which is responsible for neural circuits triggering defensive, aggressive, or avoidant behavioral models. The social behavior network consists of the medial amygdala, medial hypothalamus and periaqueductal gray, and it positively modulates reactive aggression. An important role in the incidence of aggressive behavior is played by secreted factors such as testosterone, glucocorticoids, pheromones, as well as by expression of genes such as neuroligin-2, monoamine oxidase A, serotonin transporters, etc. The authors deliberate whether aggression in sport is advantageous (or even indispensable), or to what extent it can hamper attainment of sport success. Methods of reducing and inhibiting expression of aggression in athletes are indicated.

References

[1] Cięszczyk P., Maciejewska A., Sawczuk M., Ficek K., Eider J., Jascaniene N., The angiotensin converting enzyme gene I/D polymorphism in elite Polish and Lithuanian judo players. Biol. Sport., 2010, 27, 119-122 10.5604/20831862.913078Search in Google Scholar

[2] Maciejewska-Karłowska A., Polymorphisms in the Peroxisome Proliferator-Activated Receptor genes: relevance for athletic performance. Trends Sport Sci., 2013, 1, 5-15 10.1007/978-1-62703-420-3_3Search in Google Scholar

[3] Sawczuk M., Maciejewska-Karłowska A., Cięszczyk P., A single nucleotide polymorphism rs553668 in ADRA2A gene and Polish elite endurance athlete status. Trends Sport Sci., 2013, 1, 30-35 Search in Google Scholar

[4] Stępień-Słodkowska M., Ficek K., Eider J., Leońska-Duniec A., Maciejewska-Karłowska A., Sawczuk M., et al., THE +1245G/T polymorphisms in the collagen type I alpha 1 (COL1A1) gene in polish skiers with anterior cruciate ligament injury. Biol. Sport., 2013, 30, 57-60 10.5604/20831862.1029823Search in Google Scholar

[5] Yu D., Yu Y., Wilde B., Shan G., Biomechanical characteristics of the axe kick in tae kwon-do. Arch. Budo., 2012, 8, 213-218 10.12659/AOB.883548Search in Google Scholar

[6] Yavus H.U., Oktem F., The relationship between depression, anxiety and visual reaction times in athletes. Biol. Sport., 2012, 29, 205-209 10.5604/20831862.1003444Search in Google Scholar

[7] Kolayis H., Using EEG biofeedback in karate: The relationship among anxiety, motivation and brain waves. Arch. Budo., 2012, 8, 13-18 10.12659/AOB.882446Search in Google Scholar

[8] Akert R.M., Aronson E., Wilson T.D., Social Psychology (7th ed.). Upper saddle river, NJ: Prentice Hall, 2010. Search in Google Scholar

[9] Nelson R.J., Chiavegatto S., Aggression in knockout mice. ILAR J., 2000. 41, 153–162. 10.1093/ilar.41.3.153Search in Google Scholar

[10] Blanchard R.J., Wall P.M., Blanchard D.C., Problems in the study of rodent aggression. Horm. Behav., 2003, 44, 161–170 10.1016/S0018-506X(03)00127-2Search in Google Scholar

[11] Robinson M.D., Wilkowski B.N., Personality processes in anger and reactive aggression: an introduction. J. Pers., 2010, 78, 1–8 10.1111/j.1467-6494.2009.00606.xSearch in Google Scholar PubMed

[12] Blair R.J.R., Peschardt K.S., Budhani S., Mitchell D.G.V., Pine D.S., The development of psychopathy. J. Child Psychol. Psychiatry., 2006, 47, 262–275 10.1111/j.1469-7610.2006.01596.xSearch in Google Scholar PubMed

[13] McElliskem J.E., Affective and predatory violence: a bimodal classification system of human aggression and violence. Aggress. Violent Beh., 2004, 10, 1–30 10.1016/j.avb.2003.06.002Search in Google Scholar

[14] Bushman, B.J., Anderson C.A., Is it time to pull the plug on the hostile versus instrumental aggression dichotomy? Psychol. Rev., 2001, 108, 273–279 10.1037/0033-295X.108.1.273Search in Google Scholar

[15] Snow S., Violence and aggression in sports: an in-depth look (Part One). Bleacher Report, 2010, March 23 Search in Google Scholar

[16] Durrant R., Collective violence: An evolutionary perspective. Aggress. Violent Beh., 2011, 16, 428–436 10.1016/j.avb.2011.04.014Search in Google Scholar

[17] Eagly A., Steffen V., Gender and aggressive behavior: a meta-analytic review of the social psychological literature. Psychol. Bull., 1986, 106, 323 – 325 Search in Google Scholar

[18] Hess N., Hagen E., Sex differences in indirect aggression psychological evidence from young adults. Evol. Hum. Behav., 2006, 27, 231 – 245 10.1016/j.evolhumbehav.2005.11.001Search in Google Scholar

[19] Rand M.R., Robinson J.E., Criminal victimization in the United States, 2008 - Statistical Tables. 2011, Report of the Bureau of Justice Statistics No. NCJ-231173. Available at: http://bjs.ojp. usdoj.gov/index.cfm?ty=pbdetail&iid=2218. Search in Google Scholar

[20] Moffitt T.E., Caspi A., Rutter M., Silva P.A., Sex differences in antisocial behaviour: conduct disorder, delinquency and violence in the Dunedin longitudinal study. 2001, Cambridge University Press, Cambridge 10.1017/CBO9780511490057Search in Google Scholar

[21] Simpson K., The role of testosterone in aggression. McGill J. Med., 2001, 6, 32-40 Search in Google Scholar

[22] Keeler L.A., The differences in sport aggression, life aggression, and life assertion among adult male and female collision, contact, and non-contact sport athletes. J. Sport Behav., 30, 57–76 Search in Google Scholar

[23] Al-Ali, M.M., Social anxiety in relation to social skills, aggression, and stress among male and female commercial institute students. Education, 2011, 132, 351–61 Search in Google Scholar

[24] Sundberg JP, Roopenian DC, Liu ET, Schofield PN. The Cinderella Effect: Searching for the Best Fit between Mouse Models and Human Diseases. J Invest Dermatol. 2013 Jun 27. doi: 10.1038/ jid.2013.238. [Epub ahead of print] Search in Google Scholar

[25] Pavlov K.A., Chistiakov D.A., Chekhonin V.P., Genetic determinants of aggression and impulsivity in humans. J. Appl. Genet., 2012, 53, 61-82 10.1007/s13353-011-0069-6Search in Google Scholar

[26] Cairns R.B., Aggression from a developmental perspective: genes, environments and interactions. Ciba Found. Symp. 1996, 194, 45–56 10.1002/9780470514825.ch3Search in Google Scholar

[27] Hermans J., Kruk M.R., Lohman A.H., Meelis W., Mos, J., Mostert, P.G., et al., Discriminant analysis of the localization of aggression-inducing electrode placements in the hypothalamus of male rats. Brain Res., 1983, 260, 61–79 10.1016/0006-8993(83)90764-3Search in Google Scholar

[28] . Delville Y., Ferris C.F., Fuler R.W., Koppel G.R.R.W; Melloni Jr, H., Perry K.W., Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J. Neurosci., 1997, 17, 4331–4340 10.1523/JNEUROSCI.17-11-04331.1997Search in Google Scholar

[29] Potegal M., Ferris C.F., Herbert M., Meyerhoff J., Skaredoff L., Attack priming in female Syrian Golden hamsters is associated with a c-fos-coupled process within the corticomedial amygdala. Neuroscience, 1996, 5, 869–880 10.1016/0306-4522(96)00236-9Search in Google Scholar

[30] Amaral D.G., Bauman M.D., Lavenex P., Mason W.A., Toscano J.E., The expression of social dominance following neonatal lesions of the amygdala or hippocampus in Rhesus monkeys (Macaca mulatta). Behav. Neurosci., 2006, 120, 749–760 10.1037/0735-7044.120.4.749Search in Google Scholar

[31] Caramaschi D., De Boer S.F., De Vries H., Koolhaas J.M., Development of violence in mice through repeated victory along with changes in prefrontal cortex neurochemistry. Behav. Brain Res., 2008, 189, 263–72 10.1016/j.bbr.2008.01.003Search in Google Scholar

[32] Kulikova MA, Maluchenko NV, Timofeeva MA, Shlepzova VA, Schegolkova JV, Sysoeva OV, Ivanitsky AM, Tonevitsky AG. Effect of functional catechol-O-methyltransferase Val158Met polymorphism on physical Bull Exp Biol Med. 2008 Jan;145(1):62-4. 10.1007/s10517-008-0006-9Search in Google Scholar

[33] Gregg T.R., Siegel A., Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2001, 25, 91–140 10.1016/S0278-5846(00)00150-0Search in Google Scholar

[34] Lonstein J.S., Stern J.M., Role of the midbrain periaqueductal gray in maternal nurturance and aggression: c-fos and electrolytic lesion studies in lactating rats. J. Neurosci., 1997, 17, 3364–3378 10.1523/JNEUROSCI.17-09-03364.1997Search in Google Scholar

[35] Stork O., Welzl H., Cremer H., Schachner M., Increased intermale aggression and neuroendocrine response in mice deficient for the neural cell adhesion molecule (NCAM). Eur. J. Neurosci., 1997, 9, 1117–1125 10.1111/j.1460-9568.1997.tb01464.xSearch in Google Scholar

[36] Lyons W.E., Mamounas L.A., Ricaurte G.A., Coppola V., Reid S.W., Bora S.H., et al., Brain-derived neurotrophic factordeficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl. Acad. Sci. USA., 1999, 96, 15239–15244] 10.1073/pnas.96.26.15239Search in Google Scholar

[37] Wersinger S.R., Ginns E.I., O’Carroll A.M., Lolait S.J., Young W.S., Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatr., 2002, 7, 975–984 10.1038/sj.mp.4001195Search in Google Scholar

[38] Hasen N.S., Gammie S.C., Differential fos activation in virgin and lactating mice in response to an intruder. Physiol. Behav., 2005, 84, 681–695 10.1016/j.physbeh.2005.02.010Search in Google Scholar

[39] Albert D.J., Dyson E.M., Walsh M.L., Wong R., Defensive aggression and testosterone-dependent intermale social aggression are each elicited by food competition. Physiol. Behav., 1988, 43, 21–28 10.1016/0031-9384(88)90093-5Search in Google Scholar

[40] Holmes A., Murphy D.L., Crawley J.N., Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl), 2002, 161, 160–167 10.1007/s00213-002-1024-3Search in Google Scholar

[41] Miczek K.A., Fish E.W., De Bold J.F., De Almeida R.M., Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl), 2002, 163, 434–458 10.1007/s00213-002-1139-6Search in Google Scholar

[42] Garris D.R., Aggression-associated changes in murine olfactory tubercle bioamines. Brain Res., 2003, 963, 150–155 10.1016/S0006-8993(02)03963-XSearch in Google Scholar

[43] Parmigiani S., Rodgers R.J., Palanza P., Mainardi M., Brain P.F., The inhibitory effects of fluprazine on parental aggression in female mice are dependent upon intruder sex. Physiol. Behav., 1989, 46, 455–459 10.1016/0031-9384(89)90020-6Search in Google Scholar

[44] Parmigiani S., Palanza P., Fluprazine inhibits intermale attack and infanticide, but not predation, in male mice. Neurosci. Biobehav. R., 1991, 15, 511–513 10.1016/S0149-7634(05)80141-1Search in Google Scholar

[45] Sanchez-Martin E., Fano L., Ahedo J., Cardas J., Brain P.F., Azpíroz A., Relating testosterone levels and free play social behavior in male and female preschool children. Psychoneuroendocrino., 2000, 8, 773–783 10.1016/S0306-4530(00)00025-1Search in Google Scholar

[46] Brown G.L., McGarvey E.L., Shirtcliff E.A., Keller A., Granger D.A., Flavin K., Salivary cortisol, dehydroepiandrosterone, and testosterone interrelationships in healthy young males: a pilot study with implications for studies of aggressive behavior. Psychiatry Res., 2008, 30, 67–76 10.1016/j.psychres.2007.06.012Search in Google Scholar

[47] Yu Y.Z., Shi J.X., Relationship between levels of testosterone and cortisol in saliva and aggressive behaviors of adolescents. Biomed. Environ. Sci., 2009, 22:44–49 10.1016/S0895-3988(09)60021-0Search in Google Scholar

[48] Chichinadze K.N., Domianidze T.R., Matitaishvili T.T., Chichinadze N.K., Lazarashvili A.G., Possible relation of plasma testosterone level to aggressive behavior of male prisoners. Bull. Exp. Biol. Med., 2010, 149, 7–9 10.1007/s10517-010-0861-zSearch in Google Scholar

[49] Wilson M., Daly M., Competitiveness, risk-taking, and violence - the young male syndrome. Ethol. Sociobiol., 1985, 6, 59–73 10.1016/0162-3095(85)90041-XSearch in Google Scholar

[50] Archer J., Testosterone and human aggression: An evaluation of the challenge hypothesis. Neurosci. Biobehav. R., 2006, 30, 319–201 10.1016/j.neubiorev.2004.12.007Search in Google Scholar

[51] Book A.S., Starzyk K.B., Quinsey V.L., The relationship between testosterone and aggression: a meta-analysis. Aggress. Violent Behav., 2001, 6, 579–599 10.1016/S1359-1789(00)00032-XSearch in Google Scholar

[52] Wingfield J.C., Ball G.F., Dufty Jr. A.M., Hegner R.E., Ramenofsky M., Testosterone and aggression in birds. Am. Sci., 1987, 5, 602–608 Search in Google Scholar

[53] Muller M.N., Wrangham R.W., Dominance, aggression and testosterone in wild chimpanzees: a test of the ‘challenge hypothesis’. Anim. Behav., 2004, 67, 113–123 10.1016/j.anbehav.2003.03.013Search in Google Scholar

[54] Rothballer A.B., Aggression, defense and neurohumors. UCLA Forum Med. Sci., 1967, 7, 135–170 10.1525/9780520340190-004Search in Google Scholar

[55] Owen K., Peters P.J., Bronson F.H., Effects of intracranial implants of testosterone propionate on intermale aggression in the castrated male mouse. Horm. Behav., 1974, 5, 83–92 10.1016/0018-506X(74)90009-9Search in Google Scholar

[56] Saal F.S., Gandelman R., Svare B., Aggression in male and female mice: evidence for changed neural sensitivity in response to neonatal but not adult androgen exposure. Physiol. Behav., 1976, 17, 53–57 10.1016/0031-9384(76)90269-9Search in Google Scholar

[57] Svare B., Testosterone propionate inhibits maternal aggression in mice. Physiol. Behav., 1980, 24, 435–439 10.1016/0031-9384(80)90232-2Search in Google Scholar

[58] Albert D.J., Dyson E.M., Walsh M.L., Wong R., Defensive aggression and testosterone-dependent intermale social aggression are each elicited by food competition. Physiol. Behav., 1988, 43, 21–28 10.1016/0031-9384(88)90093-5Search in Google Scholar

[59] Soma K.K., Scotti M.A., Newman A.E., Charlier T.D., Demas G.E., Novel mechanisms for neuroendocrine regulation of aggression. Front Neuroendocrin., 2008, 29, 476–89 10.1016/j.yfrne.2007.12.003Search in Google Scholar PubMed

[60] Chamero P., Marton T.F., Logan D.W., Identification of protein pheromones that promote aggressive behaviour. Nature, 2007, 450, 899–902 10.1038/nature05997Search in Google Scholar PubMed

[61] Gronek P., Przysiecki P., Nowicki S., Kalak R., Juzwa W., Szalata M., et al., Is G-T substitution in the sequence of CAG repeats within the androgen receptor gene associated with aggressive behaviour in the red fox Vulpes vulpes ? Acta Theriol., 2008, 53, 17-25 10.1007/BF03194275Search in Google Scholar

[62] Aluja A., García L.F., Blanch A., Fibla J., Association of androgen receptor gene, CAG and GGN repeat length polymorphism and impulsive-disinhibited personality traits in inmates: the role of short-long haplotype. Psychiatr. Genet., 2011, 21, 229-39 10.1097/YPG.0b013e328345465eSearch in Google Scholar

[63] Lee, J. Harley V.R., The male fight-flight response: a result of SRY regulation of catecholamines? Bioessays. 2012. 34, (6), 454-457 10.1002/bies.201100159Search in Google Scholar

[64] Derringer J., Krueger R,F., Irons D.E., Iacono W.G., Harsh discipline, childhood sexual assault, and MAOA genotype: An investigation of main and interactive effects on diverse clinical externalizing outcomes. Behav. Genet., 40, 639–648 10.1007/s10519-010-9358-9Search in Google Scholar

[65] Miles D.R, Carey G., Genetic and environmental architecture of human aggression. J. Pers. Soc. Psychol., 1997, 72(1), 207–217 10.1037/0022-3514.72.1.207Search in Google Scholar

[66] Seroczynski A.D, Bergeman C.S., Coccaro E.F., Etiology of the impulsivity/aggression relationship: Genes or environment? Psychiatry Res., 1999, 86(1). 41–57 10.1016/S0165-1781(99)00013-XSearch in Google Scholar

[67] Slutske W.S., The genetics of antisocial behavior. Curr, Psychiatry Rep., 2001, 3(2), 158–162 10.1007/s11920-001-0014-1Search in Google Scholar PubMed

[68] Rhee S.H., Waldman I.D., Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychol, Bull., 2002, 128(3), 490–529 10.1037/0033-2909.128.3.490Search in Google Scholar

[69] Yeh M.T., Coccaro E.F., Jacobson K.C., Multivariate behavior genetic analyses of aggressive behavior subtypes. Behav Genet., 2010 40(5), 603–617 10.1007/s10519-010-9363-zSearch in Google Scholar PubMed PubMed Central

[70] Sysoeva O.V., Maluchenko N.V., Timofeeva M.A., Portnova G.V., Kulikova M.A., Tonevitsky A.G., Ivanitsky A.M., Aggression and 5HTT polymorphism in females: study of synchronized swimming and control groups.Int J Psychophysiol., 2009, 72(2),173-8 10.1016/j.ijpsycho.2008.12.005Search in Google Scholar PubMed

[71] Maliuchenko N.V., Sysoeva O.V., Vediakov A.M., Timofeeva M.A., Portanova G.V., et al., Effect of 5HTT genetic polymorphism on aggression in athletes.Zh Vyssh Nerv Deiat Im I P Pavlova. 2007,57(3), 276-81 Search in Google Scholar

[72] Kohl C., Riccio O., Grosse J., Zanoletti O., Fournier C., Schmidt M.V., et al., Hippocampal neuroligin-2 overexpression leads to reduced aggression and inhibited novelty reactivity in rats. PLoS One. 2013; 8, e56871 10.1371/journal.pone.0056871Search in Google Scholar

[73] Sandi C., Grosse J., Fantin M., Stress effects on mood and sociability - cell adhesion molecules as molecular targets. Eur. Neuropsychopharm., 2011, 21, S211 10.1016/S0924-977X(11)70303-0Search in Google Scholar

[74] Guillot P.Vr., Roubertoux P.L., Crusio W.E., Hippocampal mossy fiber distributions and intermale aggression in seven inbred mouse strains. Brain Res., 1994, 660, 167–169 10.1016/0006-8993(94)90852-4Search in Google Scholar

[75] Sala M., Caverzasi E., Lazzaretti M., Morandotti N., De Vidovich G., Dorsolateral prefrontal cortex and hippocampus sustain impulsivity and aggressiveness in borderline personality disorder. J. Affect. Disorders, 2011, 131: 417–421 10.1016/j.jad.2010.11.036Search in Google Scholar PubMed

[76] Comai S., Tau M., Gobbi G., The psychopharmacology of aggressive behavior: a translational approach: part 1: neurobiology. J. Clin. Psychopharmacol., 2012, 32: 83–94 10.1097/JCP.0b013e31823f8770Search in Google Scholar PubMed

[77] Shih J.C., Grimsby J., Chen K., Zhu Q.S., Structure and promoter organization of the human monoamine oxidase A and B genes. Psychiatry Neurosci., 1993, 18, 25–32 Search in Google Scholar

[78] Cases O., Seif I., Grimsby J., Gaspar P., Chen K., Pournin S., et al., Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science, 1995, 268, 1763–1766 10.1126/science.7792602Search in Google Scholar PubMed PubMed Central

[79] Brunner H.G., Nelen M., BreakeWeld X.O., Ropers H.H., van Oost B.A., Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 1993, 262, 578–580 10.1126/science.8211186Search in Google Scholar PubMed

[80] Sabol S.Z., Hu S., Hamer D., A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet., 103, 273–279 10.1007/s004390050816Search in Google Scholar PubMed

[81] Deckert J., Catalano M., Syagailo Y.V., Bosi M., Okladnova O., Di B.D., et al., Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum. Mol. Genet., 1999, 8, 21–624 10.1093/hmg/8.4.621Search in Google Scholar PubMed

[82] Guo G., Ou X-M., Roettger M., Shih J.C., The VNTR 2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: associations and MAOA promoter activity. Eur. J. Hum. Genet., 2008, 16, 626–634 10.1038/sj.ejhg.5201999Search in Google Scholar PubMed PubMed Central

[83] Denney R.M., Koch H., Craig I.W., Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Hum. Genet., 1999, 105, 542–551 10.1007/s004399900183Search in Google Scholar

[84] Caspi A., McClay J., Moffitt T.E., Mill J., Martin J., Craig I.W., et al., Role of genotype in the cycle of violence in maltreated children. Science, 2002, 297, 851–854 10.1126/science.1072290Search in Google Scholar

[85] Kim-Cohen J., Caspi A., Taylor A., Williams B., Newcombe R., Craig I.W., et al., MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol. Psychiatry., 2006, 1, 903–913 10.1038/sj.mp.4001851Search in Google Scholar

[86] Philibert R.A., Wernett P., Plume J., Packer H., Brody G.H., Beach S.R., Gene environment interactions with a novel variable Monoamine Oxidase A transcriptional enhancer are associated with antisocial personality disorder. Biol. Psychol., 2011, 36, 366–371 10.1016/j.biopsycho.2011.04.007Search in Google Scholar

[87] Márquez C., Poirier G.L., Cordero M.I., Larsen M.H., Groner A., Marquis J., et al., Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Transl. Psychiatry, 2013, 3: e216; doi:10.1038/tp.2012.144 10.1038/tp.2012.144Search in Google Scholar

[88] Cordero M I, Poirier G L , Marquez C , Veenit V , Fontana X , Salehi B , Ansermet F , C Sandi1 Evidence for biological roots in the transgenerational transmission of intimate partner violence Translational Psychiatry (2012) 2, e106; doi:10.1038/ tp.2012.32 Published online 24 April 2012 Search in Google Scholar

[89] Grober M.S., Sunobe T., Serial adult sex change involves rapid and reversible changes in forebrain neurochemistry. Neuroreport. 1996, 7, 2945–2949 10.1097/00001756-199611250-00029Search in Google Scholar

[90] Albers H.E., Bamshad M., Role of vasopressin and oxytocin in the control of social behavior in Syrian hamsters (Mesocricetus auratus) Prog. Brain Res., 1998, 119, 395–408 10.1016/S0079-6123(08)61583-6Search in Google Scholar

[91] Dantzer R., Vasopressin, gonadal steroids and social recognition. Prog. Brain Res., 1998, 119, 409–414 10.1016/S0079-6123(08)61584-8Search in Google Scholar

[92] Godwin J., Sawby R., Warner R.R., Crews D., Grober M.S., Hypothalamic arginine vasotocin mRNA abundance variation across sexes and with sex change in a coral reef fish. Brain Behav. Evol., 2000, 55, 77–84 10.1159/000006643Search in Google Scholar PubMed

[93] Semsar K., Kandel F.L., Godwin J., Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Horm. Behav., 2001, 40, 21–31 10.1006/hbeh.2001.1663Search in Google Scholar PubMed

[94] Wersinger S.R., Kelliher RK, Zufall F, Lolait SJ, O’Carroll AM, Young WS., 3rd., Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task. Horm. Behav., 2004, 46, 638–645 10.1016/j.yhbeh.2004.07.004Search in Google Scholar PubMed

[95] Wersinger S.R., Caldwell H. K., Christiansen M., Young W. Scott., 3rd., Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain. Behav., 2007, 6, 653–660 10.1111/j.1601-183X.2006.00294.xSearch in Google Scholar PubMed PubMed Central

[96] Hernando F., Schoots O., Lolait S.J., Burbach J.P., Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology, 2001, 142, 1659–1668 10.1210/endo.142.4.8067Search in Google Scholar PubMed

[97] Sysoeva O.V., Kulikova M.A., Maliuchenko N.V., Tonevitskiĭ A.G., Ivanitskiĭ A.M.. Genetic and social factors in developing of aggression. Fiziol. Cheloveka, 2010, 36(1), 48-55 10.1134/S0362119710010056Search in Google Scholar

[98] Orwell G ‘The Sporting Spirit. Tribune. — GB, London. — December 1945. Search in Google Scholar

[99] Kalina R.M., The profile of sense of positive health and survival abilities indices (subjective assessment) as a diagnostic tool used in health-related training. Arch. Budo, 2012, 8, 179-190 10.12659/AOB.883491Search in Google Scholar

[100] Rascle O, Coulomb G, Pfister R. Aggression and goal orientations in handball: influence of institutional sport context. Percept Mot Skills. 1998 Jun;86(3 Pt 2):1347-60 10.2466/pms.1998.86.3c.1347Search in Google Scholar PubMed

Received: 2013-6-26
Accepted: 2014-5-7
Published Online: 2014-10-2

©2015 Piotr Gronek, et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow