Abstract
In order to provide molecular characteristics of wild pear (P. pyraster) resources, six populations (192 accessions) from different regions of Poland were investigated with 17 SSR loci. Each of the SSR loci used was polymorphic, with a mean of 19.5 alleles per locus and a mean PIC of 0.806. Both the high heterozygosity (Ho = 0.751) and low Fis (0.007) indicated that the wild pear populations maintain a relatively high level of diversity, while the mean Findex of 0.039 and the number of migrants per generation (Nm = 6.996) revealed a high gene flow and weak inter-population differentiation. AMOVA analysis located polymorphisms mainly within populations (96%). Genetic relations between populations did not show correlations with geographical distances. The dispersal influence of gene flow could be the reason of the disrupted relationship within populations and the low interpopulation differentiation. We did not find any evidence to support the hypothesis about influence of interspecies hybridization with pear cultivars on the level of wild pear population diversity.
References
[1] Toro M., Caballero A., Characterization and conservation of genetic diversity in subdivided populations, Philos. Trans. R. Soc. B Biol. Sci., 2005, 360, 1367–1378 10.1098/rstb.2005.1680Search in Google Scholar PubMed PubMed Central
[2] Ellis J.R., Burke J.M., EST-SSRs as a resource for population genetic analyses, Heredity, 2007, 99, 125–132 10.1038/sj.hdy.6801001Search in Google Scholar PubMed
[3] Lazrek F., Roussel V., Ronfort J., Cardinet G., Chardon F., Aouani M.E., et al., 2009. The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables, Genetica, 2009, 135, 391–402 10.1007/s10709-008-9285-3Search in Google Scholar PubMed
[4] Tian-Ming H., Xue-Sen C., Zheng X., Jiang-Sheng G., Pei-Jun L., Wen L., et al., 2007. Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China, Genet. Resour. Crop Evol., 2007, 54, 563–572 10.1007/s10722-006-0013-5Search in Google Scholar
[5] Xie W.G., Lu X.F., Zhang X.Q., Huang L.K., Cheng L., Genetic variation and comparison of orchardgrass (Dactylis glomerata L.) cultivars and wild accessions as revealed by SSR markers, Genet. Mol. Res. GMR, 2012, 11, 425–433 10.4238/2012.February.24.1Search in Google Scholar PubMed
[6] Yamamoto T., Kimura T., Sawamura Y., Manabe T., Kotobuki K., Hayashi T., et al., Simple sequence repeats for genetic analysis in pear, Euphytica, 2002, 124, 129–137 10.1023/A:1015677505602Search in Google Scholar
[7] Yamamoto T., Kimura T., Shoda M., Imai T., Saito T., Sawamura Y., et al., Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears, Theor. Appl. Genet., 2002, 106, 9–18 10.1007/s00122-002-0966-5Search in Google Scholar PubMed
[8] Fernández-Fernández F., Harvey N.G., James C.M., Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.), Mol. Ecol. Notes, 2006, 6, 1039–1041 10.1111/j.1471-8286.2006.01422.xSearch in Google Scholar
[9] Kimura T., Shi Y.Z., Shoda M, Kotobuki K, Matsuta N, Hayashi T., et al., Identification of Asian Pear Varieties by SSR Analysis, Breed. Sci., 2002, 52, 115–121 10.1270/jsbbs.52.115Search in Google Scholar
[10] Yamamoto T., Kimura T., Shoda M., Ban Y., Hayashi T., Matsuta N., Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol. Ecol. Notes, 2002, 2, 14–16 10.1046/j.1471-8286.2002.00128.xSearch in Google Scholar
[11] Yamamoto T., Kimura T., Sawamura Y., Kotobuki K., Ban Y., Hayashi T., et al. SSRs isolated from apple can identify polymorphism and genetic diversity in pear, Theor. Appl. Genet., 2001, 102, 865–870 10.1007/s001220000524Search in Google Scholar
[12] Pierantoni L., Cho K-H., Shin I-S., Chiodini R., Tartarini S., Dondini L., et al., Characterisation and transferability of apple SSRs to two European pear F1 populations, Theor. Appl. Genet., 2004, 109, 1519–1524 10.1007/s00122-004-1775-9Search in Google Scholar PubMed
[13] Pierantoni L., Dondini L., Cho K.H., Shin I.S., Gennari F., Chiodini R., et al., Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map, Tree Genet. Genomes, 2007, 3, 311–317 10.1007/s11295-006-0070-0Search in Google Scholar
[14] Terakami S., Adachi Y., Iketani H., Sato Y., Sawamura Y., Takada N., et al., Genetic mapping of genes for susceptibility to black spot disease in Japanese pears, Genome, 2007, 50, 735–741 10.1139/G07-053Search in Google Scholar
[15] Evans K.M., Govan C.L., Fernández-Fernández F., 2008. A new gene for resistance to Dysaphis pyri in pear and identification of flanking microsatellite markers, Genome, 2008, 51, 1026–1031 10.1139/G08-093Search in Google Scholar PubMed
[16] Volk G.M., Richards Ch.M., Henk A.D., Reilley A.A., Diversity of Wild Pyrus communis Based on Microsatellite Analyses, J. Am. Soc. Hortic. Sci., 2006, 131, 408–417 10.21273/JASHS.131.3.408Search in Google Scholar
[17] Bao L., Chen K., Zhang D., Cao Y., Yamamoto T., Teng Y. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers, Genet. Resour. Crop Evol., 2007, 54, 959–971 10.1007/s10722-006-9152-ySearch in Google Scholar
[18] Wolko Ł., Antkowiak W., Lenartowicz E., Bocianowski J., Genetic diversity of European pear cultivars (Pyrus communis L.) and wild pear (Pyrus pyraster (L.) Burgsd.) inferred from microsatellite markers analysis. Genet. Resour. Crop Evol., 2010, 57, 801–806 10.1007/s10722-010-9587-zSearch in Google Scholar
[19] Yakovin N.A., Fesenko I.A., Isachkin A.V., Karlov G.I., Polymorphism of microsatellite loci in cultivars and species of pear (Pyrus L.), Russ. J. Genet., 2011, 47, 564–570 10.1134/S1022795411040156Search in Google Scholar
[20] Cao Y., Tian L., Gao Y., Liu F., Genetic diversity of cultivated and wild Ussurian Pear (Pyrus ussuriensis Maxim.) in China evaluated with M13-tailed SSR markers. Genet. Resour. Crop Evol., 2012, 59, 9–17 10.1007/s10722-011-9661-1Search in Google Scholar
[21] Sehic J., Garkava-Gustavsson L., Fernández-Fernández F., Nybom H., Genetic diversity in a collection of European pear (Pyrus communis) cultivars determined with SSR markers chosen by ECPGR, Sci. Hortic., 2012, 145, 39–45 10.1016/j.scienta.2012.07.023Search in Google Scholar
[22] Terpo A., Studies on taxonomy jand grouping of Pyrus species, Feddes Repert., 1985, 96, 73–87. 10.1002/fedr.4910960114Search in Google Scholar
[23] Oliveira C.M., Mota M., Monte-Corvo L., Goulao L., Silva D.M., Molecular typing of Pyrus based on RAPD markers, Sci. Hortic., 1999, 79, 163–174 10.1016/S0304-4238(98)00205-2Search in Google Scholar
[24] Potter D., Eriksson T., Evans R.C., Oh S., Smedmark J.E.E., et al., Phylogeny and classification of Rosaceae, Plant Syst. Evol., 2007, 266, 5–43 10.1007/s00606-007-0539-9Search in Google Scholar
[25] Zheng, X., Hu, C., Spooner, D., Liu, J., Cao J., Teng Y., Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae), BMC Evol. Biol., 2011, 11, 255 10.1186/1471-2148-11-255Search in Google Scholar PubMed PubMed Central
[26] Paganová V., The evaluation of height growth of wild pear (Pyrus pyraster) progenies from different regions of Slovak republic, J. For. Sci. - UZPI Czech Repub., 2001, 47, 464–472 Search in Google Scholar
[27] Paganová V., Taxonomic reliability of leaf and fruit morphological characteristics of the Pyrus L. taxa in Slovakia, Horticul Sci Prague, 2003, 30, 98–107 10.17221/3869-HORTSCISearch in Google Scholar
[28] Paganová V., Wild pear Pyrus pyraster L. Burgsd. requirements on environmental conditions, Hortic. Sci., 2003, 22, 225–241 Search in Google Scholar
[29] Paganová V., The occurrence and morphological characteristics of the wild pear lower taxa in Slovakia, Hortic. Sci., 2009, 36, 1–13. 10.17221/5/2008-HORTSCISearch in Google Scholar
[30] Antkowiak W., Cedro A., Prajs B., Wolko Ł., Michalak M., Success of wild pear Pyrus pyraster (L.) Burgsd. in colonization of steep sunny slopes : an interdisciplinary study in the Bielinek Reserve (NW Poland), Pol. J. Ecol., 2012, 60, 57–78 Search in Google Scholar
[31] Hoffmann H., Zur Verbreitung und Ökologie der Wildbirne (Pyrus communis L.) in Süd-Niedersachsen und Nordhessen sowie ihrer Abgrenzung von verwilderten Kulturbirnen (Pyrus domestica Med.), Mitt Dtsch. Dendrol Ges, 1993, 81, 71–94 Search in Google Scholar
[32] Wagner I., Zusammenstellung morphologischer Merkmale und ihrer Ausprägungen zur Unterscheidung von Wild- und Kulturformen des Apfel - (Malus) und des Birnbaumes (Pyrus), Mitt Dtsch. Dendrol Ges, 1996, 82, 87–108 Search in Google Scholar
[33] Dostálek I., Pyrus x amphigenea, seine Taxonomie und Nomenklatur. Folia Geobot Phytotaxon, 1989, 24, 103–108 10.1007/BF02854797Search in Google Scholar
[34] Dolatowski J.N.J., Podyma W., Szymanska M., Zych M., Molecular studies on the variability of Polish semi-wild pears Pyrus using AFLP, J. Fruit Ornam. Plant Res., 2004, 12, 331–337 Search in Google Scholar
[35] Halász J., Hegedûs A., Pedryc A., Review of the molecular background of self-incompatibility in rosaceous fruit trees, J. Hortic. Sci., 2006, 12, 7–18 10.31421/IJHS/12/2/630Search in Google Scholar
[36] Holderegger R., Häner R., Csencsics D., Angelone S., Hoebee S.E., S-allele diversity suggests no mate limitation in small populations of a self-incompatible plant, Evol. Int. J. Org. Evol., 2008, 62, 2922–2928 10.1111/j.1558-5646.2008.00498.xSearch in Google Scholar PubMed
[37] Wolko Ł., Antkowiak W., Sips M., Słomski R., Self-incompatibility alleles in Polish wild pear (Pyrus pyraster (L.) Burgsd.): a preliminary analysis, J. Appl. Genet., 2010, 51, 33–35 10.1007/BF03195708Search in Google Scholar PubMed
[38] Hoebee S.E., Angelone S., Csencsics D., Määttänen K., Holderegger R., Diversity of S-Alleles and Mate Availability in 3 Populations of Self-Incompatible Wild Pear (Pyrus pyraster), J. Hered., 2012, 103, 260–267 10.1093/jhered/esr126Search in Google Scholar PubMed
[39] Torres A.M., Weeden N.F., Martín A., Linkage among isozyme, RFLP and RAPD markers in Vicia faba, Theor. Appl. Genet., 1993, 85, 937–945 10.1007/BF00215032Search in Google Scholar PubMed
[40] Nei M., Chesser R.K., Estimation of fixation indices and gene diversities. Ann. Hum. Genet., 1983, 47, 253–259 10.1111/j.1469-1809.1983.tb00993.xSearch in Google Scholar PubMed
[41] Weir B.S., Cockerham C.C., Estimating F-Statistics for the Analysis of Population Structure, Evolution, 1984, 38, 1358 10.2307/2408641Search in Google Scholar
[42] Anderson J.A., Churchill G.A., Autrique J.E., Tanksley S.D., Sorrells M.E., Optimizing parental selection for genetic linkage maps, Genome Natl. Res. Counc. Can., 1993, 36, 181–186 10.1139/g93-024Search in Google Scholar PubMed
[43] Peakall R., Smouse P.E., GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, 6, 288–295 10.1111/j.1471-8286.2005.01155.xSearch in Google Scholar
[44] Falconer D.S., Mackay T.F.C., Introduction to quantitative genetics, Longman, Essex, England. 1996 Search in Google Scholar
[45] Irzykowska L., Weber Z., Bocianowski J., Comparison of Claviceps purpurea populations originated from experimental plots or fields of rye, Cent. Eur. J. Biol., 2012, 7, 839–849 10.2478/s11535-012-0075-7Search in Google Scholar
[46] Nei M., Tajima F., Tateno Y., Accuracy of estimated phylogenetic trees from molecular data, J. Mol. Evol., 1983, 19, 153–170 10.1007/BF02300753Search in Google Scholar PubMed
[47] Bowcock A.M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J.R., et al., High resolution of human evolutionary trees with polymorphic microsatellites, Nature, 1994, 368, 455–457 10.1038/368455a0Search in Google Scholar PubMed
[48] Evanno G., Regnaut S., Goudet J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, 14, 2611–2620 10.1111/j.1365-294X.2005.02553.xSearch in Google Scholar
[49] Lenormand T., Gene flow and the limits to natural selection, Trends Ecol. Evol., 2002, 17, 183–189 10.1016/S0169-5347(02)02497-7Search in Google Scholar
[50] Burczyk J., DiFazio S.P., Adams W.T., Gene flow in forest trees: how far do genes really travel, For. Genet., 2004, 11, 179–192 Search in Google Scholar
[51] Konuma A., Tsumura Y., Lee C.T., Lee S.L., Okuda T., Estimation of gene flow in the tropical-rainforest tree Neobalanocarpus heimii (Dipterocarpaceae), inferred from paternity analysis, Mol. Ecol., 2000, 9, 1843–1852 10.1046/j.1365-294x.2000.01081.xSearch in Google Scholar PubMed
[52] Godoy J.A., Jordano P., Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites, Mol. Ecol., 2001, 10, 2275–2283 10.1046/j.0962-1083.2001.01342.xSearch in Google Scholar PubMed
[53] Hardesty B.D., Dick C.W., Kremer A., Hubbell S., Bermingham E., Spatial genetic structure of Simarouba amara Aubl. (Simaroubaceae), a dioecious, animal-dispersed Neotropical tree, on Barro Colorado Island, Panama, Heredity, 2005, 95, 290–297 10.1038/sj.hdy.6800714Search in Google Scholar PubMed
[54] López-Bao J.V., González-Varo J.P., Frugivory and Spatial Patterns of Seed Deposition by Carnivorous Mammals in Anthropogenic Landscapes: A Multi-Scale Approach. PLoS ONE, 2011, 6, e1456910.1371/journal.pone.0014569Search in Google Scholar PubMed PubMed Central
©2015 Łukasz Wolko, et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.