Abstract
Environmental scanning electron microscopy enables the investigation of uncoated pine early embryogenic tissue samples in situ. The samples were examined under low vacuum conditions (air pressure 550 Pa) at a temperature of around -18°C by the AQUASEM II noncommercial environmental scanning electron microscope. The native extracellular matrix surface network was imaged by the environmental scanning electron microscope and in dark field mode of the optical microscope too. The backscattered electron detector disclosed brightness loci in the cells of early embryogenic culture. This work shows images of native pine embryogenic tissues. The continuity of extracellular matrix with structural integrity of plant organism is discussed.
References
[1] Dubois T., Dubois J., Guedira M., Diop A., Vasseur J., SEM characterization of an extracellular matrix around somatic proembryos in roots of Cichorium, Ann. Bot., 1992, 70, 119–124 10.1093/oxfordjournals.aob.a088447Search in Google Scholar
[2] Jásik J., Salajová T., Salaj J., Developmental anatomy and ultrastructure of early somatic embryos in European black pine (Pinus nigra Arn.), Protoplasma, 1995, 185, 205–211 10.1007/BF01272861Search in Google Scholar
[3] Šamaj J., Bobák M., Blehová A., Krištin J., Auxtová - Šamajová O. , Developmental SEM observations of an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays, Protoplasma, 1995, 186, 45–49 10.1007/BF01276934Search in Google Scholar
[4] Lai K.S., Yusoff K., Maziah M., Extracellular matrix as the early structural marker for Centella asiatica embryogenic tissues, Biol. Plantarum, 2011, 55, 549–553 10.1007/s10535-011-0123-6Search in Google Scholar
[5] Šamaj J., Baluška F., Bobák M., Volkmann D., Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4, Plant Cell Rep., 1999, 18, 369–374 10.1007/s002990050588Search in Google Scholar
[6] Šamaj J., Bobák M., Blehová A., Preťová A., Importance of cytoskeleton and cell wall in somatic embryogenesis. In: A. Mujib, J. Šamaj (Eds.), Plant Cell Monographs, Vol. 2 - Somatic embryogenesis, 1st ed., Berlin, Heidelberg, Springer-Verlag, 2006, 35-50 10.1007/7089_024Search in Google Scholar
[7] Popielarska-Konieczna M., Bohdanowicz J., Starnawska E., Extracellular matrix of plant callus tissue visualized by ESEM and SEM, Protoplasma, 2010, 247, 121-125 10.1007/s00709-010-0149-1Search in Google Scholar PubMed
[8] Keinonen-Mettälä K., Jalonen P., Eurola P., von Arnold S., von Weissenberg K., Somatic embryogenesis of Pinus sylvestris, Scand. J.For. Research, 1996, 11, 242–250 10.1080/02827589609382933Search in Google Scholar
[9] Lelu M.A., Bastien C., Drugeault A., Gouez M.L., Klimaszewska K., Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on the medium with and without plant growth regulators, Physiol. Plantarum, 1999, 105, 719–728 10.1034/j.1399-3054.1999.105417.xSearch in Google Scholar
[10] Niskanen A.M., Lu J., Seitz S., Keinonen K., von Weissenberg K., Pappinen A., Effect of parent genotype on somatic embryogenesis of Scots pine (Pinus sylvestris), Tree Physiol., 2004, 24, 1259-1265 10.1093/treephys/24.11.1259Search in Google Scholar PubMed
[11] Aronen T., Pehkonen T., Ryynänen L., Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris, Scand. J. Forest Research, 2009, 24, 372-383 10.1080/02827580903228862Search in Google Scholar
[12] Lu J., Konstianen K., Jaakola L., Heiska S., Harju A., Julkunen- Tiitto R.,Venäläinen M., Aronen T. Secondary phenolic compounds in somatic embryogenesis of Pinus sylvestris L. – a preliminary study. In: Y.S. Park, J.M. Bonga (Eds.), Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management, Proceedings of the IUFRO Working Party 2.09.02 conference, June 25-28, 2012 Brno, Czech Republic, Session 4, p. 1 Search in Google Scholar
[13] Abrahamsson M., Valladares S., Larsson E., Clapham D., von Arnold S., Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death, Plant Cell Tiss Organ Cult., 2012, 109, 391-400 10.1007/s11240-011-0103-8Search in Google Scholar
[14] Gupta P.K., Durzan D.J., Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana), Plant Cell Rep., 1985, 4, 177-179 10.1007/BF00269282Search in Google Scholar PubMed
[15] Neděla V., Controlled dehydration of a biological sample using an alternative form of environmental SEM, J.Microsc., 2010, 237, 7-11 10.1111/j.1365-2818.2009.03216.xSearch in Google Scholar PubMed
[16] Neděla V., Konvalina I.; Lencová B.; Zlámal J., Comparison of calculated, simulated and measured signal amplification in a variable pressure SEM, Nucl. Instr. & Methods. in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2011, 645, 79-83 10.1016/j.nima.2010.12.200Search in Google Scholar
[17] Pilarska M., Knox J.P., Konieczny R., Arabinogalactan-protein and pectin epitopes in relation to an extracellular matrix surface network and somatic embryogenesis and callogenesis in Trifolium nigrescens Viv., Plant Cell Tiss.Organ Cult. 2013, 115, 35-44 10.1007/s11240-013-0337-8Search in Google Scholar
[18] Šamaj J., Salaj T., Matúšová R., Salaj J., Takáč, T., Šamajová O.,Volkmann D., Arabinogalactan-protein epitope Gal4 is differentially regulated and localized in cell lines of hybrid fir (Abies alba x Abies cephalonica) with different embryogenic and regeneration potential, Plant Cell Rep., 2008, 27, 221-229 10.1007/s00299-007-0429-1Search in Google Scholar PubMed
[19] Waldron K.W., Brett C.T., The role of polymer cross-linking in intercellular adhesion, In: J.A. Roberts, Z. Gonzalez-Carranza (Eds.), Plant Cell Separation and Adhesion, Annual Plant Reviews, Volume 25, Blackwell Publishing Ltd., 2007, 183-204 10.1002/9780470988824.ch9Search in Google Scholar
[20] Hoenemann C., Richardt S., Krüger K., Zimmer A.D.., Hohe A., Rensing S.A. Large impact of the apoplast on somatic embryogenesis in Cyclamen persicum offers possibilities for improved developmental control in vitro, BMC Biology, 2000, 10,77 doi: 10.1186/1471-2229-10-77 http:// www.biomedcentral.com/1471- 2229/10/77 10.1186/1471-2229-10-77Search in Google Scholar PubMed PubMed Central
[21] Wells O.C., Backscattered electron image (BSI) in the scanning electron microscope (SEM), Scanning Electron Microsc., 1977, 1, 747-771 Search in Google Scholar
[22] Ball M.D., Mc Cartney D.G., The measurement of atomic number and composition in an SEM using backscattered detectors, J.Microsc., 1981, 124, 57-68 10.1111/j.1365-2818.1981.tb01305.xSearch in Google Scholar
[23] Walther P., Autrata R., Chen Y., Pawley J.B., Backscattered electron imaging for high resolution surface scanning electron microscopy with a new type YAG-detector, Scanning Microsc., 1991, 5, 301-310 Search in Google Scholar
[24] Ushiki T., Hashizume H., Itoh S., Kuboki K., Saito S., Tanaka K., Low-voltage backscattered electron imaging of non-coated biological samples in a low vacuum environment using a variable-pressure scanning electron microscope with a YAG-detector, J. Electron Microsc. (Tokyo), 1998, 47, 351-354 10.1093/oxfordjournals.jmicro.a023602Search in Google Scholar PubMed
[25] Šebánek J., Sladký Z., Procházka S., Luxová M., Erdelská O., Experimental Morphogenesis and Integration of Plants, 1st ed., Academia Praha, published in co-edition with ELSEVIER, 1991 Search in Google Scholar
[26] Dostál R., On Integration in Plants, 1st ed., Harvard University Press, 1967 Search in Google Scholar
©2015 Jiří Hřib et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.