Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 8, 2016

Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana

José L. Rodríguez, Juana G. De Diego, Francisco D. Rodríguez and Emilio Cervantes
From the journal Biologia

Abstract

Mitochondrial morphology and evolution have been observed during seed germination and early seedling development in Arabidopsis thaliana line 43a9 (ecotype Columbia) expressing green fluorescent protein in these organelles. Fluorescence, confocal and electronic microscopy images reveal that mitochondrial development goes through different stages, and that the organelle structure varies with cell types during these processes. Mitochondria develop from larger, isodiametric structures pre-existent in the dry seed called promitochondria. After germination, variations in mitochondrial morphology occur synchronously with cell differentiation and cell division in the course of early root development. Some promitochondria develop into intermediate structures resembling the syncytial organelles. These structures have been described in certain plants under hypoxia as intermediates for the formation of mature mitochondria. On the other hand, other promitochondria temporarily remain in the cells of the root apex

References

Attucci S., Carde J.P., Raymond P., Saint-Gès V., Spiteri A. & Pradet A. 1991. Oxidative phosphorylation by mitochondria extracted from dry sunflower seeds. Plant Physiol. 95: 390-398.10.1104/pp.95.2.390Search in Google Scholar PubMed PubMed Central

Barrôco R.M., Van Poucke K., Bergervoet J.H.W., De Veylder L., Groot S.P.C., Inzé D. & Engler G. 2005. The role of the cell cycle machinery in resumption of postembryonic development.10.1104/pp.104.049361Search in Google Scholar PubMed PubMed Central

Plant Physiol. 137: 127-140.Search in Google Scholar

Bewley J.D. 1997. Seed germination and dormancy. Plant Cell 9: 1055-1066.10.1105/tpc.9.7.1055Search in Google Scholar PubMed PubMed Central

Bewley J.D. & Black M. 1994. Seeds: Physiology of Development and Germination, Plenum Press, New York, NY.10.1007/978-1-4899-1002-8Search in Google Scholar

Carrie C., Murcha M.W., Giraud E., Ng S., Zhang M.F., Narsai R. & Whelan J. 2013. How do plants make mitochondria? Planta 237: 429-439.10.1007/s00425-012-1762-3Search in Google Scholar PubMed

Cervantes E., Javier Martín J., Ardanuy R., de Diego J.G. & Tocino Á. 2010. Modeling the Arabidopsis seed shape by a cardioid: efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants. J. Plant Physiol. 167: 408-410.10.1016/j.jplph.2009.09.013Search in Google Scholar PubMed

Colón-Carmona A., You R., Haimovitch-Gal T. & Doerner P.Search in Google Scholar

1999. Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 20: 503-508. de Diego J.G., David Rodriguez F., Rodríguez Lorenzo J.L. & Cervantes E. 2007. The prohibitin genes in Arabidopsis thaliana: expression in seeds, hormonal regulation and possible role in cell cycle control during seed germination. J. Plant Physiol. 164: 371-373. de Diego J.G., Rodríguez F.D., Rodríguez J.L., Cervantes E. & P.G. 2006. cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences.10.1016/j.jplph.2006.05.002Search in Google Scholar PubMed

J. Plant Physiol. 163: 452-462.Search in Google Scholar

Gallardo K., Job C., Groot S.P.C., Puype M., Demol H., Vandekerckhove J. & Job D. 2002. Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth.10.1034/j.1399-3054.2002.1160214.xSearch in Google Scholar PubMed

Physiol. Plant 116: 238-247.Search in Google Scholar

Hiramatsu T., Misumi O., Kuroiwa T. & Nakamura S. 2006.Search in Google Scholar

Morphological changes in mitochondrial and chloroplast nucleoids and mitochondria during the Chlamydomonas reinhardtii (Chlorophyceae) cell cycle. J. Phycol. 42: 1048-1058.10.1111/j.1529-8817.2006.00259.xSearch in Google Scholar

Howell K.A., Millar A.H. & Whelan J. 2006. Ordered assembly of mitochondria during rice germination begins with promitochondrial structures rich in components of the protein import apparatus. Plant Mol. Biol. 60: 201-223.10.1007/s11103-005-3688-7Search in Google Scholar PubMed

Howell K.A., Millar A.H. & Whelan J. 2007. Building the powerhouse: what are the signals involved in plant mitochondrial biogenesis? Plant Signal. Behav. 2: 428-430.10.4161/psb.2.5.4464Search in Google Scholar PubMed PubMed Central

Koornneef M. & Meinke D. 2010. The development of Arabidopsis as a model plant. Plant J. 61: 909-921.10.1111/j.1365-313X.2009.04086.xSearch in Google Scholar PubMed

Li P., Jiao J., Gao G. & Prabhakar B.S. 2012. Control of mitochondrial activity by miRNAs. J. Cell. Biochem. 113: 1104-1110.10.1002/jcb.24004Search in Google Scholar PubMed PubMed Central

Logan D.C. 2010. The dynamic plant chondriome. Semin. Cell Dev. Biol. 21: 550-557.10.1016/j.semcdb.2009.12.010Search in Google Scholar PubMed

Logan D.C. & Leaver C.J. 2000. Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J. Exp. Bot. 51: 865-871.Search in Google Scholar

Logan D.C., Millar A.H., Sweetlove L.J., Hill S.A. & Leaver C.J.Search in Google Scholar

2001. Mitochondrial biogenesis during germination in maize embryos. Plant Physiol. 125: 662-672.10.1104/pp.125.2.662Search in Google Scholar PubMed PubMed Central

Martín J.J., Tocino Á., Ardanuy R., Juana G. & Cervantes E.Search in Google Scholar

2014. Dynamic analysis of Arabidopsis seed shape reveals differences in cellulose mutants. Acta Physiol. Plant. 36: 1585-1592.10.1007/s11738-014-1534-8Search in Google Scholar

Merkwirth C. & Langer T. 2009. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim. Biophys. Acta 1793: 27-32.10.1016/j.bbamcr.2008.05.013Search in Google Scholar PubMed

Oparka K.J., Gates P.J. & Boulter D. 1981. Regularly aligned mitochondria in aleurone and sub-aleurone layers of developing rice caryopses. Plant Cell Environ 4: 355-357.10.1111/j.1365-3040.1981.tb02112.xSearch in Google Scholar

Ramonell K.M., Kuang A., Porterfield D.M., Crispi M.L., Xiao Y., McClure G. & Musgrave M.E. 2001. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Environ. 24: 419-428.10.1046/j.1365-3040.2001.00691.xSearch in Google Scholar PubMed

Rolletschek H., Borisjuk L., Koschorreck M., Wobus U. & Weber H. 2002. Legume embryos develop in a hypoxic environment.10.1093/jexbot/53.371.1099Search in Google Scholar PubMed

J. Exp. Bot. 53: 1099-1107.Search in Google Scholar

Rosenfeld E., Schaeffer J., Beauvoit B. & Salmon J.M. 2004.Search in Google Scholar

Isolation and properties of promitochondria from anaerobic stationary-phase yeast cells. Antonie Van Leeuwenhoek 85: 9-21.10.1023/B:ANTO.0000020268.55350.54Search in Google Scholar

Schiefelbein J.W., Masucci J.D. &Wang H. 1997. Building a root: the control of patterning and morphogenesis during root development.10.1105/tpc.9.7.1089Search in Google Scholar PubMed PubMed Central

Plant Cell 9: 1089-1098.Search in Google Scholar

Seguí-Simarro J.M., Coronado M.J. & Staehelin L.A. 2008. The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol. 148: 1380-1393.10.1104/pp.108.126953Search in Google Scholar PubMed PubMed Central

Seguí-Simarro J.M. & Staehelin L. A. 2009. Mitochondrial reticulation in shoot apical meristem cells of Arabidopsis provides a mechanism for homogenization of mtDNA prior to gamete formation. Plant Signal. Behav. 4: 168-171.10.4161/psb.4.3.7755Search in Google Scholar PubMed PubMed Central

Sheahan M.B., McCurdy D.W. & Rose R.J. 2005. Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J. 44: 744-755.10.1111/j.1365-313X.2005.02561.xSearch in Google Scholar PubMed

Ubeda-Tomas S., Federici F., Casimiro I., Beemster G.T., Bhalerao R., Swarup R., Doerner P., Haseloff J. & Bennett M.J. 2009. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr. Biol. 19: 1194-1199.10.1016/j.cub.2009.06.023Search in Google Scholar PubMed

Van Gestel K. & Verbelen J.P. 2002. Giant mitochondria are a response to low oxygen pressure in cells of tobacco (Nicotiana tabacum L.). J. Exp. Bot. 53: 1215-1218.10.1093/jexbot/53.371.1215Search in Google Scholar PubMed

Welchen E., Garcia L., Mansilla N. & Gonzalez D.H. 2014. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. Front. Plant Sci. 4: 551.10.3389/fpls.2013.00551Search in Google Scholar PubMed PubMed Central

Yamamoto H., Morino K., Nishio Y., Ugi S., Yoshizaki T., Kashiwagi A. & Maegawa H. 2012. MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am. J. Physiol.10.1152/ajpendo.00097.2012Search in Google Scholar PubMed

Endocrinol. Metab. 303: E1419-E1427.Search in Google Scholar

Yoo B.Y. 1970. Ultrastructural changes in cells of pea embryo radicles during germination. J. Cell Biol. 45: 158-171. 10.1083/jcb.45.1.158Search in Google Scholar PubMed PubMed Central

Received: 2015-2-26
Accepted: 2015-8-19
Published Online: 2016-1-8
Published in Print: 2015-8-1

© 2016