Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 25, 2016

Tissue regeneration of Abies embryogenic cell lines after 1 year storage in liquid nitrogen

  • Terezia Salaj , Radoslava Matusova , Rony Swennen , Bart Panis and Jan Salaj EMAIL logo
From the journal Biologia


Embryogenic tissues of hybrid firs (Abies alba × A. cephalonica, Abies alba × A. numidica) have been cryopreserved using a slow-freezing method. The cryotolerance of six cell lines initiated from immature or mature zygotic embryos was tested. Following sorbitol (0.5 M) and DMSO (5%) pretreatments the samples were slowly frozen at a rate of 1°C/min, plunged into liquid nitrogen and stored for 1 year. Post-thaw regeneration ocurred in all the six tested cell lines with recovery frequencies ranging from 100% (cell lines AC1, AC2, AC78, AN72), 90% (cell line AC2) to 44.4% (cell line AC79). Fresh and dry mass accumulation of cryopreserved tissues evaluated three month after thawing was identical to that of control (non-cryopreserved tissues without pretreatment). The cryopreservation procedure resulted in disintegration of bipolar structure of somatic embryos. The long vacuolised suspensor cells almost completely disrupted and the meristematic embryonal cells survived cryopreservation. In the post-thaw period, repeated cell divisions of meristematic cells led to formation of new cell clusters and their vacuolisation resulted in polarisation and finally to the formation of bipolar structures and somatic embryos.


The work was supported by VEGA proj. No. 2/0136/14 and from the EC under project no. 26220220180: Building Research Centre “AgroBioTech”.


Alvarez J.M., Cortizo M. & Ordas R.J. 2012. Cryopreservation of somatic embryogenic cultures of Pinus pinaster: effects on regrowth and embryo maturation. CryoLetters 33: 476–484.Search in Google Scholar

Aronen T., Krajnakova J., Häggman H. & Ryynänen L.A. 1999.Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci. 142: 163–172.10.1016/S0168-9452(98)00244-1Search in Google Scholar

Bonga J.M. 2004. The effect of various culture media on the formation of embryo-like structures in cultures derived from ex-plants taken from mature Larix deciduas. Plant Cell Tiss. Organ Cult. 77: 43–48.10.1023/B:TICU.0000016488.79965.b7Search in Google Scholar

Cyr D., Lazaroff W.R., Grimes S.M.A., Quan G., Bethune T.D., Dunstan D.I. & Roberts D.R. 1994. Cryopreservation of interior spruce (Picea glauca engelmanni complex) embryogenic cultures. Plant Cell Rep. 13: 574–577.10.1007/BF00234514Search in Google Scholar

de Verno L.L., Park Y.S., Bonga J.M. & Barrett J.D. (1999).,Somaclonal variation in cryopreserved embryogenic clones of white spruce (Picea glauca Moench. Voss.). Plant Cell Rep. 18: 948–963.10.1007/s002990050689Search in Google Scholar

dos Santos A.L.W., Steiner N., Guerra M.P., Zoglauer K. & Moerschbacher B.M. 2008. Somatic embryogenesis in Araucaria angustifolia. Biol. Plantarum 52: 195–199.10.1007/s10535-008-0044-1Search in Google Scholar

Engelmann F. 2004. Plant cryopreservation: Progress and prospect. In Vitro Cell. Dev. Biol. Plant 40: 427–433.10.1079/IVP2004541Search in Google Scholar

Erdelský K. & Frič F. 1979. Practicum and Analytical Methods in Plant Physiology. Slovak Pedagogical Publishers, Bratislava, 624 pp. (In Slovak).Search in Google Scholar

Find J.I., Kristensen M.M.H., Norgaard J.V. & Krogstrup P.1998. Effect of culture period and cell density on regrowth following cryopreservation of embryogenic suspension cultures of Norway spruce and Sitka spruce. Plant Cell Tiss. Organ Cult. 53: 27–33.10.1023/A:1006070729489Search in Google Scholar

Gale S., John A. & Benson E.E. 2007. Cryopreservation of Picea sitchensis (sitka spruce) embryogenic suspensor masses. CryoLetters 28: 225–239.Search in Google Scholar

Gupta P.K. & Durzan D.J. 1985. Shoot multiplication from mature trees of Douglas fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 4: 177–179.10.1007/BF00269282Search in Google Scholar

Häggman H., Ryynänen L.A., Aronen T. & Krajnakova J. 1998.Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tiss. Organ Cult. 54: 45–53.10.1023/A:1006104325426Search in Google Scholar

Hakman I., Fowke L.C., von Arnold S. & Eriksson T. 1985.The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci. 38: 53–60.10.1016/0168-9452(85)90079-2Search in Google Scholar

Hargreaves C.I., Grace L.J. & Holden D.G. 2002. Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines. Plant Cell Rep. 21: 40–45.10.1007/s00299-002-0478-4Search in Google Scholar

Hazubska-Przybyl T., Chmielarz P., Michalak M. & Bojarczuk K. 2010. Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell Tiss. Organ Cult. 102: 35–44.10.1007/s11240-010-9701-0Search in Google Scholar

Klimaszewska K. & Cyr D. 2002. Conifer somatic embryogenesis:I. Development. Dendrobiol. 48: 31–39.Search in Google Scholar

Klimaszewska K., Overton C., Steward D. & Rutledge R.G. 2011.Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233: 635–647.10.1007/s00425-010-1325-4Search in Google Scholar PubMed

Kong L. & von Aderkas P. 2011. A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tiss. Organ Cult. 106: 115–125.10.1007/s11240-010-9899-xSearch in Google Scholar

Krajňáková J., Sutela S., Aronen T., Gömöry D., Vianello A.& Häggman H. 2011. Long-term cryopreservation of Greek fir embryogenic cell lines: Recovery, maturation and genetic fidelity. Cryobiology 63: 17–25.10.1016/j.cryobiol.2011.04.004Search in Google Scholar PubMed

Krajňáková J., Bertolini A., Gömöry D., Vianello A. & Häggman H. 2013. Initiation, long-term cryopreservation, and recovery of Abies alba Mill. embryogenic cell line. In Vitro Cell. Develop. Biol. – Plant 49: 560–571.10.1007/s11627-013-9512-1Search in Google Scholar

Kristensen M.M.H., Find J.I., Floto F., Moller J.D., Norgaard J.V. & Krogstrup P. 1994. The origin and development of somatic embryos following cryopreservation of an embryogenic suspension culture of Picea sitchensis. Protoplasma 182: 65–70.10.1007/BF01403690Search in Google Scholar

Latutrie M. & Aronen T. 2013. Long-term cryopreservation of embryogenic Pinus sylvestris cultures. Scandin. J. Forest Res. 28: 103–109.10.1080/02827581.2012.701325Search in Google Scholar

Lelu-Walter M.-A., Bernier-Cardou M. & Klimaszewska K. 2006.Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep. 25: 767–776.10.1007/s00299-006-0115-8Search in Google Scholar PubMed

Marum L., Estevao C., Oliveira M.M., Amancio S., Rodrigues L. & Miguel C. 2004. Recovery of cryopreserved embryogenic cultures of maritime pine – effect of cryoprotectant and suspension density. CryoLetters 25: 363–374.Search in Google Scholar

Mathur G., Alkutkar V.A. & Nadgauda R.S. 2003. Cryopreservation of embryogenic culture of Pinus roxburghii. Biol. Plant. 46: 205–210.10.1023/A:1022894409408Search in Google Scholar

Montalbán I.A., De Diego N. & Moncaleán P. 2012. Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don.) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments. Acta Physiol. Plant. 34: 451–460.10.1007/s11738-011-0841-6Search in Google Scholar

Nörgaard J.V., Baldursson S. & Krogstrup P. 1993. Genotypic differences in ability of embryogenic Abies nordmanniana cultures to survive cryopreservation. Silvae Gen. 42: 93–97.Search in Google Scholar

Panis B. & Lambardi M. 2005. Status of cryopreservation technologies in plants (crops and forest trees), pp. 43–54. In: The Role of Biotechnology, Vila Gualino, March 5–7, Turin, Italy.Search in Google Scholar

Panta A., Panis B., Ynouye C., Swennen R. & Roca W. 2014. Development of a PVS2 droplet vitrification method for potato cryopreservation. CryoLetters 35: 255–266.Search in Google Scholar

Park S.Y., Klimaszewska K., Park J.Y. & Mansfield S.D. 2010.Lodgepole pine: the first evidence of seed based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol. 30: 1469– 1478.10.1093/treephys/tpq081Search in Google Scholar PubMed

Reinhoud P. J., van Iren F. & Kijne J.W. 2000. Cryopreservation of undifferentiated plant cells, pp. 91–102. In: Engelmann F. & Takagi H. (eds), Cryopreservation of Tropical Germplasm: Current Research Progress and Application, IPGRI, Roma.Search in Google Scholar

Ruaud J.N., Bercetche J. & Paques M. 1992. First evidence of somatic embryogenesis from needles of 1–year–old Picea abies plants. Plant Cell Rep. 11: 563–566.10.1007/BF00233093Search in Google Scholar PubMed

Runions C.J. & Owens J.N. 1999. Sexual reproduction of interior spruce (Pinaceae). II. Fertilisation to early embryo formation. Int. J. Plant Sci. 160: 641–652.10.1086/314171Search in Google Scholar

Salaj T. & Salaj J. 2003. Somatic embryo formation on mature Abies alba x Abies cephalonica zygotic embryo explants. Biol. Plant. 47: 7–11.10.1023/A:1027312410957Search in Google Scholar

Salaj T., Panis B., Swennen R. & Salaj J. 2007. Cryopreservation of embryogenic tissues of Pinus nigra Arn. by a slow freezing method. CryoLetters 28: 69–76.Search in Google Scholar

Salaj T., Matusikova I., Panis B., Swennen R. & Salaj J. 2010.Recovery and characterisation of hybrid firs (Abies alba × A.cephalonica, Abies alba × A. numidica) embryogenic tissues after cryopreservation. CryoLetters 31: 206–217.Search in Google Scholar

Salaj T., Matušíková I., Fráterová L., Piršelová B. & Salaj J.2011. Regrowth of embryogenic tissues of Pinus nigra following cryopreservation. Plant Cell Tiss. Organ Cult. 106: 55–61.10.1007/s11240-010-9893-3Search in Google Scholar

Salaj T., Matusiková I., Swennen R., Panis B. & Salaj J. 2012.Long-term maintenance of Pinus nigra embryogenic cultures through cryopreservation. Acta Physiol. Plant. 34: 227–233.10.1007/s11738-011-0821-xSearch in Google Scholar

Salajova T. & Salaj J. 2001. Somatic embryogenesis and plantlet regeneration from cotyledon explants isolated from emblings and seedlings of hybrid firs. J. Plant Physiol. 158: 747–755.10.1078/0176-1617-00278Search in Google Scholar

Suzuki T., Kaneko M. & Harada T. 1997. Increase in freezing resistance of excised shoot tips of Asparagus officinalis L. by preculture on sugar-rich media. Cryobiology 34: 264–275.10.1006/cryo.1997.2004Search in Google Scholar

Vondrakova Z., Cvikrova M., Eliasova K., Martincova O. &Vagner M. 2010. Cryotolerance in Norway spruce and its assotiation with growth rates, anatomical features and polyamines of embryogenic cultures. Tree Physiol. 30: 1335– 1348.10.1093/treephys/tpq074Search in Google Scholar PubMed

Vookova B. & Kormutak A. 2009. Improved plantlet regeneration from open-pollinated families of Abies alba trees of Dobro primeval forest and adjoing managed stand via somatic embryogenesis. Biologia 64: 1136–1140.10.2478/s11756-009-0183-7Search in Google Scholar

Widholm J.M. 1972. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 47: 189–194.10.3109/10520297209116483Search in Google Scholar PubMed

Received: 2015-6-4
Accepted: 2015-12-2
Published Online: 2016-2-25
Published in Print: 2016-1-1

© 2016 Institute of Botany, Slovak Academy of Sciences

Downloaded on 7.12.2023 from
Scroll to top button