Abstract
Investigating the microbial community structure and composition of toxic industrial wastes contaminated with nitrocellulose and various by-products is crucial for understanding the fate of these pollutants in the environment and for the development and application of efiective bioremediation processes. In this study, we investigated the chemical properties and toxic potential of wastewater generated during nitrocellulose production. The analyzed wastewater from settling pond contained nitrocellulose powder particles as well as increased ammonium (570–760 mg/L), sulfate (1625– 2045 mg/L) and sulfite (864–1014 mg/L) concentrations. The toxicity test results demonstrated that the wastewater samples present acute toxicity for Paramecium caudatum and Daphnia magna. Furthermore, bacterial community structure in the samples was characterized by pyrosequencing of 16S rRNA genes. Phylogenetic analysis of bacterial sequences indicated that Proteobacteria, Bacteroidetes and Firmicutes were the main phyla in the sample near inlet, whereas various phylotypes of the phyla Proteobacteria, Chlorobi, Bacteroidetes and Gemmatimonadetes dominated in the sample near outlet. Some bacterial members observed in the current work can be considered as agents capable of performing biodegradation of various hazardous contaminants, indicating that the described bacterial communities have a high potential for the development of efiective bioremediation strategies.
Electronic supplementary material. The online version of this article (DOI: 10.1515/biolog-2016-0014) contains supplementary material, which is available to authorized users.
The paper was presented at the 13th International Symposium on Aquatic Oligochaeta, Brno, Czech Republic, 7–11 September, 2015
Abbreviations: S I, sample near inlet; S O, sample near outlet.
Acknowledgements
This work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. The reported study was funded by the Russian Foundation for Basic Research according to the research project No. 14-04-31694. We thank Dr. R.Z. Agzamov for support during the sampling. Pyrosequencing was performed at the Interdisciplinary Center for collective use of Kazan Federal University for cellular, genomic and post-genomic research in Volga Region (Russia).
References
Abdel-El-Haleem D. 2003. Acinetobacter: environmental and biotechnological applications. Afr. J. Biotechnol. 2: 71–74.10.5897/AJB2003.000-1014Search in Google Scholar
Abraham W.R., Rohde M. & Bennasar A. 2014. The family Caulobacteraceae, pp. 179–205. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E. & Thompson F. (eds), The Prokaryotes, Springer-Verlag, Berlin, Heidelberg.10.1007/978-3-642-30197-1_259Search in Google Scholar
Ali M. & Sreekrishanan T.R. 2001. Aquatic toxicity from pulp and paper mill effluents: a review. Adv. Environ. Res. 5: 175– 196.10.1016/S1093-0191(00)00055-1Search in Google Scholar
Auer N., Hedger J.N. & Evans C.S. 2005. Degradation of nitro-cellulose by fungi. Biodegradation 16: 229–236.10.1007/s10532-004-0896-9Search in Google Scholar PubMed
BautistaVVMonsalud R.G. & Yokota A. 2010. Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int. J. Syst. Evol. Microbiol. 60: 627–632.10.1099/ijs.0.011254-0Search in Google Scholar PubMed
Boopathy R. 2014. Biodegradation of 2,4,6-trinitrotoluene (TNT) under sulfate and nitrate reducing conditions. Biologia 69: 1264–1270.10.2478/s11756-014-0441-1Search in Google Scholar
Brodman B.W. & Devine M.P. 1981. Microbial attack of nitrocellulose. J. Appl. Polym. Sci. 26: 997–1000.10.1002/app.1981.070260322Search in Google Scholar
Chudinskaya T.A., Nikiforova I.V., Smirnova G.A., Molchanova R.A. & Samsonova T.I. 2011. Toxicology and hygiene assessment of production operations for synthetic fibers and products as a necessary aspect of occupational safety. Fibre Chem .43: 18–21.10.1007/s10692-011-9302-7Search in Google Scholar
Eberspächer J. & Lingens F. 2006. The genus Phenylobacterium, pp. 250–256. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.H. & Stackebrandt E. (eds), Prokaryotes, Vol. 5. Springer, New York, NY.10.1007/0-387-30745-1_13Search in Google Scholar
El-Diwani G., El-Ibiari N.N. & Hawash S.I. 2009. Treatment of hazardous wastewater contaminated by nitrocellulose. J. Hazard. Mater. 167: 830–834.10.1016/j.jhazmat.2009.01.063Search in Google Scholar PubMed
Finster K., Bak F. & Pfennig N. 1994. Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch. Microbiol. 161: 328– 332.10.1007/BF00303588Search in Google Scholar
Finster K., Coates J.D., Liesack W. & Pfennig N. 1997. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment. Int. J. Syst. Bacteriol. 47: 754–758.10.1099/00207713-47-3-754Search in Google Scholar PubMed
Giacomucci L., Toja F., Sanmartín P., Toniolo L., Prieto B., Villa F. & Cappitelli F. 2012. Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC 13541. Biodegradation 23: 705–716.10.1007/s10532-012-9546-9Search in Google Scholar PubMed
Greene A.C. 2014. The family Desulfuromonadaceae, pp. 143–155. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E. & Thompson F. (eds), The Prokaryotes, Springer-Verlag, Berlin, Heidelberg.10.1007/978-3-642-39044-9_380Search in Google Scholar
Guilhermino L., Diamantino T., Silva M.C. & Soares A.M. 2000.Acute toxicity test with Daphnia magna: an alternative to mammals in the prescreening of chemical toxicity? Ecotoxicol. Environ. Saf. 46: 357–362.10.1006/eesa.2000.1916Search in Google Scholar PubMed
Ilinskaya O.N., Chernov P.P. & Leshchinskaya I.B. 1988. Decomposition of nitrocellulose by a community of microorganisms immobilized on it. Biol. Nauki 6: 87–91.Search in Google Scholar
Khilyas I.V., Ziganshin A.M., Pannier A.J. & Gerlach R. 2013.Effect of ferrihydrite on 2,4,6-trinitrotoluene biotransformation by an aerobic yeast. Biodegradation 24: 631–644.10.1007/s10532-012-9611-4Search in Google Scholar PubMed
Kumar M., Verma M. & LaI R. 2008. Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int. J. Syst. Evol. Microbiol. 58: 861–865.10.1099/ijs.0.65574-0Search in Google Scholar PubMed
Lakshmi M.B., Muthukumar K. & Velan M. 2013. Optimization of minimal salt medium for effcient phenanthrene biodegradation by Mycoplana sp. MVMB2 isolated from petroleum contaminated soil using factorial design experiments. CLEAN – Soil, Air, Water 41: 51–59.10.1002/clen.201000208Search in Google Scholar
Lynd L.R., Weimer P.J., van Zyl W.H. & Pretorius I.S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506–577.10.1128/MMBR.66.3.506-577.2002Search in Google Scholar PubMed PubMed Central
Mangwani N., Shukla S.K., Rao T.S. & Das S. 2014. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids Surf. B Biointerfaces 114: 301–309.10.1016/j.colsurfb.2013.10.003Search in Google Scholar PubMed
Oren A. & Xu X.W. 2014. The family Hyphomicrobiaceae, pp.247–281. In: Rosenberg E., DeLong E.F., Lory S., Stacke-brandt E. & Thompson F. (eds), The Prokaryotes, Springer-Verlag, Berlin, Heidelberg.10.1007/978-3-642-30197-1_257Search in Google Scholar
Pfeil A. 1999. Microbial degradation of nitrocellulose in a composting environment. Propell. Explos. Pyrotech. 24: 156–158.10.1002/(SICI)1521-4087(199906)24:03<156::AID-PREP156>3.0.CO;2-CSearch in Google Scholar
Pfennig N. & Biebl h. 1976. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110: 3–12.10.1007/BF00416962Search in Google Scholar
Pichtel J. 2012. Distribution and fate of military explosives and propellants in soil: a review. Appl. Environ. Soil Sci. 2012: 1–33.10.1155/2012/617236Search in Google Scholar
Ribeiro E.N., Da Silva F.T. & De Paiva T.C. 2013. Ecotoxicological evaluation of waste water from nitrocellulose production. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 48: 197–204.10.1080/10934529.2012.717812Search in Google Scholar
Rivas R., Willems A., Subba-Rao N.S., Mateos P.F., Dazzo F.B., Kroppenstedt R.M., Martínez-Molina E., Gillis M. & Velázquez E. 2003. Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst. Appl. Microbiol. 26: 47–53.10.1078/072320203322337308Search in Google Scholar
Sakamoto M. 2014. The family Porphyromonadaceae, pp. 811–824. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E. & Thompson F. (eds), The Prokaryotes, Springer-Verlag, Berlin, Heidelberg.10.1007/978-3-642-38954-2_132Search in Google Scholar
Sharma A., Sundaram S.T., Zhang Y.Z. & Brodman B.W. 1995.Nitrocellulose degradation by a coculture of Sclerotium rolfsfi and Fusarium solani. J. Ind. Microbiol. 15: 1–4.10.1007/BF01570005Search in Google Scholar
Shukla A.K., Upadhyay S.N. & Dubey S.K. 2014. Current trends in trichloroethylene biodegradation: a review. Crit. Rev. Biotechnol. 34: 101–114.10.3109/07388551.2012.727080Search in Google Scholar
Tarasova N.B., Gorshkov O.V. & Petrova O.E. 2009. Activity of nitrate reductase in Desulfovibrio vulgaris VKM 1388. Microbiology 78: 160–164.10.1134/S0026261709020040Search in Google Scholar
Tarasova N.B., Petrova O.E., Davydova M.N., Khairutdinov B.I. & Klochkov V.V. 2004. Changes in the nitrocellulose molecule 78 E.E. Ziganshina et al.induced by sulfate-reducing bacteria Desulfovibrio desulfuri-cans 1,388. The enzymes participating in this process. Biochemistry (Moscow) 69: 809–812.10.1023/B:BIRY.0000040208.67569.d1Search in Google Scholar
Ueki A., Akasaka h., Suzuki D. & Ueki K. 2006. Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int. J. Syst. Evol. Microbiol. 56: 39–44.10.1099/ijs.0.63896-0Search in Google Scholar PubMed
Yoo S.H., Weon h.Y., Kim B.Y., Hong S.B., Kwon S.W., Cho Y.H., Go S.J. & Stackebrandt E. 2006. Devosia soli sp. nov., isolated from greenhouse soil in Korea. Int. J. Syst. Evol. Microbiol. 56: 2689–2692.10.1099/ijs.0.64214-0Search in Google Scholar PubMed
Zaripov S.A., Naumov A.V., Abdrakhmanova J.F., Garusov A.V. & Naumova R.P. 2002. Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts. FEMS Microbiol. Lett. 217: 213– 217.10.1111/j.1574-6968.2002.tb11477.xSearch in Google Scholar PubMed
Ziganshin A.M. & Gerlach R. 2014. Pathways of 2,4,6-trinitrotoluene transformation by aerobic yeasts, pp 301–311. In: Singh S.N. (ed.), Biological Remediation of Explosive Residues, Springer International Publishing AG, Switzerland.10.1007/978-3-319-01083-0_14Search in Google Scholar
Ziganshin A.M., Ziganshina E.E., Byrne J., Gerlach R., Struve E.,Biktagirov T., Rodionov A. & Kappler A. 2015. Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica. AMB Express 5: 1–12.10.1186/s13568-014-0094-zSearch in Google Scholar PubMed PubMed Central
Ziganshin A.M., Ziganshina E.E., Pröter J., Kleinsteuber S. &Ilinskaya O.N. 2012. Methanogenic community dynamics during anaerobic utilization of agricultural wastes. Acta Naturae 4: 91–97.10.32607/20758251-2012-4-4-91-97Search in Google Scholar
Ziganshina E.E., Belostotskiy D.E., Ilinskaya O.N., Boulygina E.A., Grigoryeva T.V. & Ziganshin A.M. 2015. Effect of the organic loading rate increase and the presence of zeolite on microbial community composition and process stability during anaerobic digestion of chicken wastes. Microb. Ecol. 70: 948–960.10.1007/s00248-015-0635-2Search in Google Scholar PubMed
Ziganshina E.E., Belostotskiy D.E., Shushlyaev R.V., Miluykov V.A., Vankov P.Y. & Ziganshin A.M. 2014. Microbial community diversity in anaerobic reactors digesting turkey, chicken, and swine wastes. J. Microbiol. Biotechnol. 24: 1464–1472.10.4014/jmb.1404.04043Search in Google Scholar PubMed
© 2016 Institute of Molecular Biology, Slovak Academy of Sciences