Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 25, 2016

Characterization and expression analysis of the expansin gene NnEXPA1 in lotus Nelumbo nucifera

  • Neng Cheng , Xiao-Fei Zeng , Zheng Xing-Fei , Diao Ying , Wang You-Wei , Xie Ke-Qiang , Zhou Ming-Quan and Hu Zhong-Li EMAIL logo
From the journal Biologia


Expansin proteins play a key role in inducing the extension and relaxation of plant cell walls. To understand the physiological role of expansins in lotus crop, Nelumbo nucifera Gaertn, during plant development, we cloned an expansin gene designated as NnEXPA1 using the rapid amplification of cDNA ends technique. The full-length cDNA of NnEXPA1 was 1,456 bp encoding a protein of 250 amino acids. Gene structure of NnEXPA1 showed that it cosists of three exons and two introns. Phylogenetic tree and sequence analysis indicated that NnEXPA1 belongs to theα -expansin subfamily. Results of the real-time semi-quantitative PCR demonstrated that NnEXPA1 were difierentially expressed within all tissues except root during the plant development. Expression of NnEXPA1 in leaf and rhizome were dramatically decreased during the initial to later stages of rhizome-development. In lotus root, however, NnEXPA1 seemed to exhibit a stable expression pattern. Our results indicated that the transcript accumulation of NnEXPA1 between the initial and early stages of rhizome development may be an important factor during rhizome size determination.

The paper was presented at the 13th International Symposium on Aquatic Oligochaeta, Brno, Czech Republic, 7–11 September, 2015

Abbreviations: CBM63, carbohydrate binding module family 63; DPBB, double-psiβ -barrel; EXPA,α -expansin; GH45, glycoside hydrolase family 45; ORF, open reading frame; qPCR, real-time semi-quantitative PCR; RACE, rapid amplification of cDNA ends; UTR, untranslated regions.


This work was supported by the National Science and Technology Supporting Program (No. 2012BAD27B01). The authors are very grateful to Mr. Jian-Xiong Wang and Mrs. Xia Yu (Wuhan University) for their help in the cultivation of study materials.


Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.10.1016/S0022-2836(05)80360-2Search in Google Scholar

Bae J.M., Kwak M.S., Noh S.A., Oh M.J., Kim Y.S. & Shin J.S. 2014. Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res. 23: 657–667.10.1007/s11248-014-9804-1Search in Google Scholar PubMed

Bajwa K.S., Shahid A.A., Rao A.Q., Bashir A., Aftab A. & Husnain T. 2015. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton. Front. Plant Sci. 6: 838.10.3389/fpls.2015.00838Search in Google Scholar PubMed PubMed Central

Benson D.A., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2014. GenBank. Nucleic Acids Res 42: D32– D37.10.1093/nar/gkt1030Search in Google Scholar PubMed PubMed Central

Budzinski I.G., Santos T.B., Sera T., Pot D., Vieira L.G. & Pereira L.F. 2011. Expression patterns of three α -expansin isoforms in Coffea arabica during fruit development. Plant Biol. 13: 462–471.10.1111/j.1438-8677.2010.00400.xSearch in Google Scholar PubMed

Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233–D238.10.1093/nar/gkn663Search in Google Scholar PubMed PubMed Central

Chen F., Dahal P. & Bradford K.J. 2001. Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol. 127: 928–936.10.1104/pp.010259Search in Google Scholar

Cheng N., Zeng X.F., Zheng X.F., Diao Y., Wang Y.W., Xie K.Q., Zhou M.Q. & Hu Z.L. 2015. Cloning and characterization of the genes encoding the small and large subunit of the ADP-glucose pyrophosphorylase in lotus (Nelumbo nucifera Gaertn). Acta Physiol. Plant. 37: 1734.10.1007/s11738-014-1734-2Search in Google Scholar

Cho H.T. & Cosgrove D.J. 2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14: 3237–3253.10.1105/tpc.006437Search in Google Scholar PubMed PubMed Central

Cosgrove D.J. 1999. Enzymes and other agents that enhance cell wall extensibility. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 391–417.10.1146/annurev.arplant.50.1.391Search in Google Scholar PubMed

Cosgrove D.J. 2000. Loosening of plant cell walls by expansins. Nature 407: 321–326.10.1038/35030000Search in Google Scholar PubMed

Cosgrove D.J. 2015. Plant expansins: diversity and interactions with plant cell walls. Curr. Opin. Plant Biol. 25: 162–172.10.1016/j.pbi.2015.05.014Search in Google Scholar PubMed PubMed Central

DalSanto S.,Vannozzi A.,TornielliG.B.,FasoliM.,Venturini L., Pezzotti M. & Zenoni S. 2013. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics. PLoS One 8: e62206.10.1371/journal.pone.0062206Search in Google Scholar PubMed PubMed Central

Georgelis N., Yennawar N.H. & Cosgrove D.J. 2012. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc. Natl. Acad. Sci. USA 109: 14830–14835.10.1073/pnas.1213200109Search in Google Scholar PubMed PubMed Central

Goh H.H., Sloan J., Malinowski R. & Fleming A. 2014. Variable expansin expression in Arabidopsis leads to different growth responses. J. Plant Physiol. 171: 329–339.10.1016/j.jplph.2013.09.009Search in Google Scholar PubMed

Guo W., Zhao J., Li X., Qin L., Yan X. & Liao H. 2011. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J. 66: 541–552.10.1111/j.1365-313X.2011.04511.xSearch in Google Scholar PubMed

Huggett J., Dheda K., Bustin S. & Zumla A. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6: 279–284.10.1038/sj.gene.6364190Search in Google Scholar PubMed

Jung J., O’Donoghue E.M., Dijkwel P.P. & Brummell D.A. 2010. Expression of multiple expansin genes is associated with cell expansion in potato organs. Plant Sci. 179: 77–85.10.1016/j.plantsci.2010.04.007Search in Google Scholar

Kende H., Bradford K., Brummell D., Cho H.T., Cosgrove D., Fleming A., Gehring C., Lee Y., McQueen-Mason S., Rose J. & Voesenek L.A. 2004. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol. Biol. 55: 311–314.10.1007/s11103-004-0158-6Search in Google Scholar PubMed

Krishnamurthy P., Hong J.K., Kim J.A., Jeong M.J., Lee Y.H. & Lee S.I. 2015. Genome-wide analysis of the expansin gene superfamily reveals Brassica rapa-specific evolutionary dynamics upon whole genome triplication. Mol. Genet. Genomics 290: 521–530.10.1007/s00438-014-0935-0Search in Google Scholar PubMed

Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.10.1093/bioinformatics/btm404Search in Google Scholar PubMed

Lee D.K., Ahn J.H., Song S.K., Choi Y.D. & Lee J.S. 2003. Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol. 131: 985–997.10.1104/pp.009902Search in Google Scholar PubMed PubMed Central

Li X., Zhao J., Tan Z., Zeng R. & Liao H. 2015. GmEXPB2, a cell wall β -expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol. 169: 2640–2653.10.1104/pp.15.01029Search in Google Scholar PubMed PubMed Central

Li Y., Darley C.P., Ongaro V., Fleming A., Schipper O., Baldauf S.L. & McQueen-Mason S.J. 2002. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol. 128: 854–864.10.1104/pp.010658Search in Google Scholar PubMed PubMed Central

Lin C., Choi H.S. & Cho H.T. 2011. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol. Cells 31: 393–397.10.1007/s10059-011-0046-2Search in Google Scholar PubMed PubMed Central

Lu Y., Liu L., Wang X., Han Z., Ouyang B., Zhang J. & Li H. 2015. Genome-wide identification and expression analysis of the expansin gene family in tomato. Mol. Genet. Genomics (in press) DOI: 10.1007/s00438-015-1133-4.10.1007/s00438-015-1133-4Search in Google Scholar PubMed

McQueen-Mason S. & Cosgrove D.J. 1994. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Natl. Acad. Sci. USA 91: 6574–6578.10.1073/pnas.91.14.6574Search in Google Scholar PubMed PubMed Central

McQueen-Mason S., Durachko D.M. & Cosgrove D.J. 1992. Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4: 1425–1433.10.2307/3869513Search in Google Scholar

Minoia S., Boualem A., Marcel F., Troadec C., Quemener B., Cellini F., Petrozza A., Vigouroux J., Lahaye M., Carriero F. & Bendahmane A. 2016. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. Plant Sci. 242: 195–202.10.1016/j.plantsci.2015.07.001Search in Google Scholar PubMed

Nembaware V., Seoighe C., Sayed M. & Gehring C. 2004. A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: a hypothesis of molecular mimicry. BMC Evol. Biol. 4: 10.10.1186/1471-2148-4-10Search in Google Scholar PubMed PubMed Central

Noh S.A., Lee H.S., Kim Y.S., Paek K.H., Shin J.S. & Bae J.M. 2013. Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato. J. Exp. Bot. 64: 129–142.10.1093/jxb/ers236Search in Google Scholar PubMed PubMed Central

Palapol Y., Kunyamee S., Thongkhum M., Ketsa S., Ferguson I.B. & van Doorn W.G. 2015. Expression of expansin genes in the pulp and the dehiscence zone of ripening durian (Durio zibethinus) fruit. J. Plant Physiol. 182: 33–39.10.1016/j.jplph.2015.04.005Search in Google Scholar PubMed

Qin L., Kudla U., Roze E.H., Goverse A., Popeijus H., Nieuwland J., Overmars H., Jones J.T., Schots A., Smant G., Bakker J. & Helder J. 2004. Plant degradation: a nematode expansin acting on plants. Nature 427: 30.10.1038/427030aSearch in Google Scholar PubMed

Sampedro J., Carey R.E. & Cosgrove D.J. 2006. Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs. J. Plant Res. 119: 11–21.10.1007/s10265-005-0253-zSearch in Google Scholar PubMed

Sampedro J. & Cosgrove D.J. 2005. The expansin superfamily. Genome Biol. 6: 242.10.1186/gb-2005-6-12-242Search in Google Scholar PubMed PubMed Central

Sampedro J., Lee Y., Carey R.E., dePamphilis C. & Cosgrove D.J. 2005. Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J. 44: 409–419.10.1111/j.1365-313X.2005.02540.xSearch in Google Scholar PubMed

Schlosser J., Olsson N., Weis M., Reid K., Peng F., Lund S. & Bowen P. 2008. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.). Protoplasma 232: 255–265.10.1007/s00709-008-0280-9Search in Google Scholar PubMed

Schmittgen T.D. & Livak K.J. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101– 1108.10.1038/nprot.2008.73Search in Google Scholar PubMed

Seader V.H., Thornsberry J.M. & Carey R.E. 2015. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins. J. Plant Res. (in press) DOI: 10.1007/s10265-015-0772-1.10.1007/s10265-015-0772-1Search in Google Scholar PubMed

Shcherban T.Y., Shi J., Durachko D.M., Guiltinan M.J., Mc-Queen-Mason S.J., Shieh M. & Cosgrove D.J. 1995. Molecular cloning and sequence analysis of expansins – a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc. Natl. Acad. Sci. USA 92: 9245– 9249.10.1073/pnas.92.20.9245Search in Google Scholar PubMed PubMed Central

Shen-Miller J., Schopf J.W., Harbottle G., Cao R.J., Ouyang S., Zhou K.S., Southon J.R. & Liu G.H. 2002. Long-living lotus: germination and soil γ -irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of off-spring. Am. J. Bot. 89: 236–247.10.3732/ajb.89.2.236Search in Google Scholar PubMed

Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729.10.1093/molbev/mst197Search in Google Scholar PubMed PubMed Central

UniProt Consortium 2014. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42: D191–D198.10.1093/nar/gkt1140Search in Google Scholar PubMed PubMed Central

Wu Y., Meeley R.B. & Cosgrove D.J. 2001. Analysis and expression of the α -expansin and β -expansin gene families in maize. Plant Physiol. 126: 222–232.10.1104/pp.126.1.222Search in Google Scholar PubMed PubMed Central

Xu B., Gou J.Y., Li F.G., Shangguan X.X., Zhao B., Yang C.Q., Wang L.J., Yuan S., Liu C.J. & Chen X.Y. 2013. A cotton BURP domain protein interacts with α -expansin and their co-expression promotes plant growth and fruit production. Mol. Plant. 6: 945–958.10.1093/mp/sss112Search in Google Scholar PubMed

Xu B., Janson J.C. & Sellos D. 2001. Cloning and sequencing of a molluscan endo- β-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur. J. Biochem. 268: 3718–3727.10.1046/j.1432-1327.2001.02280.xSearch in Google Scholar PubMed

Yennawar N.H., Li L.C., Dudzinski D.M., Tabuchi A. & Cosgrove D.J. 2006. Crystal structure and activities of EXPB1 (Zeam1), a β -expansin and group-1 pollen allergen from maize. Proc. Natl. Acad. Sci. USA 103: 14664-14671.10.1073/pnas.0605979103Search in Google Scholar PubMed PubMed Central

Yu Z.M., Kang B., He X.W., Lv S.L., Bai Y.H. & Ding W.N. 2011. Root hair-specific expansins modulate root hair elongation in rice. Plant J. 66: 725–734.10.1111/j.1365-313X.2011.04533.xSearch in Google Scholar PubMed

Zenoni S., Reale L., Tornielli G.B., Lanfaloni L., Porceddu A., Ferrarini A., Moretti C., Zamboni A., Speghini A., Ferranti F. & Pezzotti M. 2004. Downregulation of the Petunia hybridaα-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. Plant Cell 16: 295–308.10.1105/tpc.018705Search in Google Scholar PubMed PubMed Central

Zhang S., Xu R., Gao Z., Chen C., Jiang Z. & Shu H. 2014a. A genome-wide analysis of the expansin genes in Malus x Domestica. Mol. Genet. Genomics 289: 225–236.10.1007/s00438-013-0796-ySearch in Google Scholar PubMed

Zhang W., Yan H., Chen W., Liu J., Jiang C., Jiang H., Zhu S. & Cheng B. 2014b. Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Mol. Genet. Genomics 289: 1061–1074.10.1007/s00438-014-0867-8Search in Google Scholar PubMed

Zhou J., Xie J., Liao H. & Wang X. 2014. Overexpression of β- expansin gene GmEXPB2 improves phosphorus effciency in soybean. Physiol. Plant. 150: 194–204.10.1111/ppl.12077Search in Google Scholar PubMed

Zhu Y., Wu N., Song W., Yin G., Qin Y., Yan Y. & Hu Y. 2014. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol. 14: 93.10.1186/1471-2229-14-93Search in Google Scholar PubMed PubMed Central

Received: 2015-6-8
Accepted: 2016-1-16
Published Online: 2016-2-25
Published in Print: 2016-1-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Downloaded on 3.12.2023 from
Scroll to top button