Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 20, 2016

A conceptual model of new hypothesis on the evolution of biodiversity

  • Roberto Cazzolla Gatti EMAIL logo
From the journal Biologia


The mechanisms that allow species to evolve, coexist, compete, cooperate or become extinct are becoming always more understood. At the same time, the factors that allow species to coexist in a given time within the same environment are still debated. Many theories and hypotheses suggest that competition tends to differentiate the ecological requirements after repeated interactions and to allow the presence of many different species in the same area (i.e. biodiversity). After all, a thorough understanding of the evolutionary dynamics of biodiversity, which could somehow explain the current distribution patterns and mechanisms of coexistence, must consider the biogeographic and phylogenetic approaches. Here I propose a new graphic model that reviews the past and present, and sometimes debated, trends in biodiversity and evolutionary science, pointing out the importance of the avoidance of competition, the biological history, the endogenosymbiosis and the three-dimensionality as the main forces that structure ecosystems and allow the evolution of biological diversity. This model is an attempt to explain and summarize some of the mechanisms that underlie the current presence of the awesome number of species that currently inhabit our planet.


Barraclough T.G. 2015. How do species interactions affect evolutionary dynamics across whole communities? Annu. Rev. Ecol. Evol. Syst. 46: 25–48. DOI: 10.1146/annurev-ecolsys-112414-05403010.1146/annurev-ecolsys-112414-054030Search in Google Scholar

Barton N.H. & Charlesworth B. 1984. Genetic revolutions, founder effects, and speciation. Annu. Rev. Ecol. Evol. Syst. 15: 133–164. DOI: 10.1146/ in Google Scholar

Bertalanffy L. von 1934. Untersuchungen über die Gesetzlichkeit desWachstums. I. Allgemeine Grundlagen der Theorie; mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen 131 (4): 613–652. DOI: 10.1007/BF0065011210.1007/BF00650112Search in Google Scholar

Bertalanffy L. von 1969. General System Theory: Foundations, Development, Applications. George Braziller, New York, xvi + 289 pp.Search in Google Scholar

Bolnick D.I. & Fitzpatrick B.M. 2007. Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38: 459–487. DOI: 10.1146/annurev.ecolsys.38.091206.095 80410.1146/annurev.ecolsys.38.091206.095 804Search in Google Scholar

Branch G.M. 1975. Mechanisms reducing intraspecific competition in Patella spp.: migration, differentiation and territorial behaviour. J. Anim. Ecol. 44 (2): 575–600. DOI: 10.2307/361210.2307/3612Search in Google Scholar

Bruno J.F., Stachowicz J.J. & Bertness M.D. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18 (3): 119–125. DOI: 10.1016/S0169-5347(02)00045-910.1016/S0169-5347(02)00045-9Search in Google Scholar

Cazzolla Gatti R.C. 2011. Evolution is a cooperative process: the biodiversity-related niches differentiation theory (BNDT) can explain why. Theoretical Biology Forum 104 (1): 35–43. PMID: 22220353Search in Google Scholar

Cazzolla Gatti R. 2012. Biodiversity is a cauliflower under the sunlight. Nature Preceedings, DOI: in Google Scholar

Cazzolla Gatti R.C. 2014. Biodiversitá. In teoria e in pratica. I edizione ottobre 2014 – Libreria Universitaria it Edizioni [Biodiversity. In theory and in practice. 1st ed. October 2014]. Padova (Italy), 358 pp. ISBN: 978-88-6292-536-5Search in Google Scholar

Chesson P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31: 343–366. DOI: 10.1146/annurev.ecolsys.31.1.34310.1146/annurev.ecolsys.31.1.343Search in Google Scholar

Connell J.H. 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35 (2): 131–138. DOI: 10.2307/354442110.2307/3544421Search in Google Scholar

Courtillot V. & Gaudemer Y. 1996. Effects of mass extinctions on biodiversity. Nature 381: 146–148. DOI: 10.1038/381146a010.1038/381146a0Search in Google Scholar

Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1st ed.). John Murray, London (UK), 502 pp.10.5962/bhl.title.39967Search in Google Scholar

Darwin C. & Wallace A.R. 1858. On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Zoological Journal of the Linnean Society 3: 46–50. DOI: 10.1111/j.1096-3642.1858.tb02500.x10.1111/j.1096-3642.1858.tb02500.xSearch in Google Scholar

Didham R.K., Tylianakis J.M., Hutchison M.A., Ewers R.M. & Gemmell N.J. 2005. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 20 (9): 470–474. DOI: 10.1016/j.tree.2005.07.00610.1016/j.tree.2005.07.006Search in Google Scholar PubMed

Durant S.M. 2000. Living with the enemy: avoidance of hyenas and lions by cheetahs in the Serengeti. Behav. Ecol. 11 (6): 624–632. DOI: 10.1093/beheco/11.6.62410.1093/beheco/11.6.624Search in Google Scholar

Eldredge N. & Gould S.J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, pp. 82–115. In: Schopf T.J.M. (ed.), Models in Paleobiology, Freeman, Cooper & Co., San Francisco, 250 pp. ISBN-10: 0877353255, ISBN-13: 978-0877353256Search in Google Scholar

Erwin D.H. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proc. Natl. Acad. Sci. 98 (10): 5399–5403. DOI: 10.1073/pnas.09109269810.1073/pnas.091092698Search in Google Scholar PubMed PubMed Central

Felsenstein J. 1981. Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35 (1): 124–138.10.1111/j.1558-5646.1981.tb04864.xSearch in Google Scholar PubMed

Forsey G.F. 2013. Fossil evidence for the escalation and origin of marine mutualisms. J. Nat. Hist. 47 (25-28): 1833–1864. DOI: 10.1080/00222933.2013.76627610.1080/00222933.2013.766276Search in Google Scholar

Gause G.F. 1934. The Struggle for Existence. Hafner Publishing Company, New York (USA), 163 pp.10.5962/bhl.title.4489Search in Google Scholar

Gavrilets S. & Losos J.B. 2009. Adaptive radiation: contrasting theory with data. Science 323 (5915): 732–737. DOI: 10.1126/science.1157966.10.1126/science.1157966Search in Google Scholar PubMed

Generoso W., Shelby M.D. & de Serres F.J. (eds) 1980. DNA Repair and Mutagenesis in Eukaryotes (Vol. 15). Springer Science & Business Media, Germany. 458 pp. ISBN: 978-1-4684-3844-410.1007/978-1-4684-3842-0Search in Google Scholar

Gorur G., Dickinson H. & Antonovics J. 1973. Theoretical considerations of sympatric divergence. Am Nat. 107 (954): 256–274. DOI: 10.1086/28282910.1086/282829Search in Google Scholar

Gurevitch J. & Padilla D.K. 2004. Are invasive species a major cause of extinctions?. Trends Ecol. Evol. 19 (9): 470–474. DOI: 10.1016/j.tree.2004.07.00510.1016/j.tree.2004.07.005Search in Google Scholar PubMed

Hamilton W.D. 2002. Narrow Roads of Gene Land. Vol. 2: Evolution of Sex. Oxford Univ. Press, Oxford, UK, 928 pp. ISBN-10: 0198503369, ISBN-13: 978-0198503361Search in Google Scholar

Hardin G. 1960. The competitive exclusion principle. Science 131 (3409): 1292–1297. DOI: 10.1126/science.131.3409.129210.1126/science.131.3409.1292Search in Google Scholar PubMed

Holmes E.E., Lewis M.A., Banks J.E. & Veit R.R. 1994. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75 (1): 17–29. DOI: 10.2307/193937810.2307/1939378Search in Google Scholar

Hubbell S. 1980. Seed predation and the coexistence of tree species in tropical forests. Oikos 35 (2): 214–229. DOI: 10.2307/354442910.2307/3544429Search in Google Scholar

Hubbell S.P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Vol. 32. Princeton University Press (USA). 392 pp. ISBN: 9780691021287Search in Google Scholar

Hubert N., Calcagno V., Etienne R.S. & Mouquet N. 2015. Metacommunity speciation models and their implications for diversification theory. Ecol. Lett. 18 (8): 864–881. DOI: 10.1111/ele.1245810.1111/ele.12458Search in Google Scholar PubMed

Hutchinson G.E. 1961. The paradox of plankton. Am. Nat. 95 (882.): 137–146. DOI: 10.1086/28217110.1086/282171Search in Google Scholar

Jackson J.B.C. & Johnson K.G. 2001. Measuring past biodiversity. Science 293 (5539): 2401–2403. DOI: 10.1126/science. 106378910.1126/science.1063789Search in Google Scholar PubMed

Kirkpatrick M. & Ravigne V. 2002. Speciation by natural and sexual selection: Models and experiments. Am. Nat. 159 (S3): S22–S35. DOI: 10.1086/33837010.1086/338370Search in Google Scholar PubMed

Kottelat M. 1995. Systematic studies and biodiversity: the need for a pragmatic approach. J. Nat. Hist. 29 (3): 565–569. DOI: 10.1080/0022293950077018110.1080/00222939500770181Search in Google Scholar

Lambin X., Aars J. & Piertney S.B. 2001. Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. Part 2, pp. 110–122. In: Clobert J., Danchin E., Dhondt A.A. & Nichols J.D. (eds), Dispersal, Oxford University Press, Oxford, 480 pp. ISBN-10: 0198506597, ISBN-13: 9780198506591Search in Google Scholar

Levene H. 1953. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87 (836): 331–333. DOI: 10.1086/28179210.1086/281792Search in Google Scholar

Levine J.M. & HilleRisLambers J. 2009. The importance of niches for the maintenance of species diversity. Nature 461: 254–257. DOI: 10.1038/nature0825110.1038/nature08251Search in Google Scholar

MacArthur R.H. & Wilson E.O. 1967. The Theory of Island Biogeography. Vol. 1. Princeton University Press (USA), 203 pp. ISBN: 0691088365, 9780691088365Search in Google Scholar

Margulis L. & Sagan D. 2008. Acquiring Genomes: A Theory of the Origins of Species. Basic Books (USA), 256 pp. ISBN: 0786722606, 9780786722600Search in Google Scholar

Maynard Smith J. 1966. Sympatric speciation. Am. Nat. 100 (916): 637–650. DOI: 10.1086/28245710.1086/282457Search in Google Scholar

McCann K.S. 2000. The diversity–stability debate. Nature 405 (6783): 228–233. DOI: 10.1038/3501223410.1038/35012234Search in Google Scholar

Meyerson L.A. & Mooney H.A. 2007. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5 (4): 199–208. DOI: 10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;210.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2Search in Google Scholar

Nowak M.A., Tarnita C.E. & Wilson E.O. 2010. The evolution of eusociality. Nature 466 (7310): 1057–1062. DOI: 10.1038/nature0920510.1038/nature09205Search in Google Scholar

Nuismer S.L. & Harmon L.J. 2015. Predicting rates of interspecific interaction from phylogenetic trees. Ecol. Lett. 18 (1): 17–28. DOI: 10.1111/ele.1238410.1111/ele.12384Search in Google Scholar

Pilkey O.H. & Pilkey-Jarvis L. 2007. Useless Arithmetic: Why Environmental Scientists can’t Predict the Future. Columbia University Press (USA), 248 pp. ISBN: 9780231506991Search in Google Scholar

Platnick N.I. 1991. Patterns of biodiversity: tropical vs temperate. J. Nat. Hist. 25 (5): 1083–1088. DOI: 10.1080/0022293 910077070110.1080/0022293 9100770701Search in Google Scholar

Purvis A. & Hector A. 2000. Getting the measure of biodiversity. Nature 405 (6783): 212–219. DOI: 10.1038/3501222110.1038/35012221Search in Google Scholar

Raxworthy C.J., Ingram C., Rabibisoa N. & Pearson R.G. 2007. Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst. Biol. 56 (6): 907–923. DOI: 10.1080/1063515070177511110.1080/10635150701775111Search in Google Scholar

Richardson J.L., Urban M.C., Bolnick D.I. & Skelly D.K. 2014. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29 (3): 165–176. DOI: 10.1016/j.tree.2014.01.00210.1016/j.tree.2014.01.002Search in Google Scholar

Rissler L.J. & Apodaca J.J. 2007. Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst. Biol. 56 (6): 924–942. DOI: 10.1080/1063515070170306310.1080/10635150701703063Search in Google Scholar

Sachs J.L., Mueller U.G., Wilcox T.P. & Bull J.J. 2004. The evolution of cooperation. Q. Rev. Biol. 79 (2): 135–160. DOI: 10.1086/38657110.1086/386571Search in Google Scholar

Sagan L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14 (3): 255–274. DOI: 10.1016/0022-5193(67)90079-310.1016/0022-5193(67)90079-3Search in Google Scholar

Seehausen O., Butlin R.K., Keller I., Wagner C.E., Boughman J.W., Hohenlohe P.A., Peichel C.L., Saetre G.P., Bank C., Brännström A., Brelsford A., Clarkson C.S., Eroukhmanoff F., Feder J.L., Fischer M.C., Foote A.D., Franchini P., Jiggins C.D., Jones F.C., Lindholm A.K., Lucek K., Maan M.E., Marques D.A., Martin S.H., Matthews B., Meier J.I., Möst M., Nachman M.W., Nonaka E., Rennison D.J., Schwarzer J., Watson E.T., Westram A.M. & Widmer A. 2014. Genomics and the origin of species. Nature Rev. Genet. 15 (3): 176–192. DOI: 10.1038/nrg364410.1038/nrg3644Search in Google Scholar

Smith J.M. 1978. The Evolution of Sex. Cambridge Univ. Press, Cambridge, 236 pp. ISBN: 9780521293020Search in Google Scholar

Smith, J.M., 1998. Evolutionary Genetics (2nd ed.). Oxford: Oxford U. Pr. (UK), 354 pp. ISBN-10: 0198502311, ISBN-13: 978-0198502319Search in Google Scholar

Sommer U. & Worm B. (eds) 2002. Competition and Coexistence. Ecological Studies, Vol. 161, Analysis and Synthesis. Springer Science & Business Media (Germany), 224 pp. ISBN: 978-3-642-62800-9 DOI: 10.1007/978-3-642-56166-510.1007/978-3-642-56166-5Search in Google Scholar

Templeton A.R. 1981. Mechanisms of speciation – a population genetics approach. Annu. Rev. Ecol. Syst. 12: 23–48. DOI: 10.1146/ in Google Scholar

Tilman D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. 101 (30): 10854–10861. DOI: 10.1073/pnas.040345810110.1073/pnas.0403458101Search in Google Scholar

Via S., Gomulkiewicz R., De Jong G., Scheiner S.M., Schlichting C.D. & Van Tienderen P.H. 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10 (5): 212–217. DOI: 10.1016/S0169-5347(00)89061-810.1016/S0169-5347(00)89061-8Search in Google Scholar

Wade M.J. 2007. The co-evolutionary genetics of ecological communities. Nature Rev. Genet. 8: 185–195. DOI: 10.1038/nrg203110.1038/nrg2031Search in Google Scholar PubMed

Wagner A. 2012. The role of robustness in phenotypic adaptation and innovation. Proc. Roy. Soc. London B: Biol. Sci. 279 (1732): 1249–1258. DOI: 10.1098/rspb.2011.229310.1098/rspb.2011.2293Search in Google Scholar PubMed PubMed Central

Wauters L., Tosi G. & Gurnell J. 2005. A review of the competitive effects of Grey Squirrell on behaviour, activity and habitat use of Red Squirrell in mixed deciduous woodland in Italy. Hystrix It. J. Mamm. 16 (1): 27–40. DOI: doi:10.4404/hystrix-16.1-434010.4404/hystrix-16.1-4340Search in Google Scholar

Wilson E.O. & Peter F.M. (eds) 1988. Biodiversity. National Academy of Sciences (U.S.), Smithsonian Institution (USA), 521 pp. ISBN: 0-309-03783-2Search in Google Scholar

Wright J.S. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130 (1): 1–14. DOI: 10.1007/s00442010080910.1007/s004420100809Search in Google Scholar PubMed

Received: 2015-7-27
Accepted: 2016-2-4
Published Online: 2016-4-20
Published in Print: 2016-3-1

© 2016 Institute of Zoology, Slovak Academy of Sciences

Downloaded on 8.12.2023 from
Scroll to top button