Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 20, 2016

Comparison of earthworm populations in arable and grassland fields in the Outer Western Carpathians, South Poland

  • Agnieszka Józefowska EMAIL logo , Anna Miechówka and Jan Frouz
From the journal Biologia


The impact of different geographical regions (Silesian Foothills, region 1 and Maly Beskids, region 2), and method of soil use (arable field and grassland) on the main soil properties and biological activity was studied. Earthworm biomass, density and diversity, as well as dehydrogenase activity, were analysed. Significant soil physical and chemical properties were more affected by regions, whereas the type of land use had a greater impact on the biological properties. The mean earthworm density was 213 ind. m−2 and 241 ind. m−2 in grassland, and 50 ind. m−2 and 120 ind. m−2 in arable field, in region 1 and 2, respectively. Eight earthworm species were recorded, and fewer species were recorded in arable field (1–4) than in grassland (6–7). The Silesian Foothills are a new habitat for the occurrence of the speciesFitzingeria platyura depressa. A high earthworm density was accompanied by high microbial activity, and dehydrogenase activity was lower in the soil of arable field than in grassland soil.


The study was supported by the Ministry of Science and Higher Education, Poland, under grant No. N N310 780640.


Blake G.R. & Hartge K.H. 1986. Particle density, Chapter 14, pp. 377–382. DOI: 10.2136/sssabookser5.1.2ed.c14. In: Klute A. (ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. 2nd ed. Series Agronomy, Number 9 (Part 1), SSSA Book Series 5, American Society of Agronomy, Madison, Wisconsin, USA, 1188 pp. ISBN-13: 978-0-89118-811-7, ISBN-10: 0-89118-811-810.2136/sssabookser5.1.2ed.c14Search in Google Scholar

Bongers T. & Ferris H. 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14 (6) 224–228. DOI: doi:10.1016/S0169-5347(98)01583-310.1016/S0169-5347(98)01583-3Search in Google Scholar

Brito-Vega H., Espinosa-Victoria D., Fragoso C., Mendoza D., De la Cruz Landero N. & AldereteChavez A. 2009. Soil organic matter particle and presence of earthworm under different tillage systems. J. Biol. Sci. 9 (2): 180–183. DOI: 10.3923/jbs.2009.180.18310.3923/jbs.2009.180.183Search in Google Scholar

Brookes P.C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils 19 (4): 269– 279. DOI: 10.1007/BF0033609410.1007/BF00336094Search in Google Scholar

Brzezińska M. & Wlodarczyk T. 2006. Methods of soil catalase and dehydrogenase activity measurement, pp. 59–74. In: Russel S., Wyczó_lkowski A.I. & Bieganowski A. (eds), Selected Methodological Aspects of Soil Enzyme Activity Tests, IA PAS, Lublin. 74 pp. ISBN-10: 83-89969-70-X, ISBN-13: 978-83-89969-70-5Search in Google Scholar

Casida L.E.J., Klein D.A. & Santoro T. 1964. Soil dehydrogenase activity. Soil Sci. 98 (6): 371–376. Ciarkowska K., So_lek-Podwika K. & Wieczorek J. 2014. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing region. J. Environ. Manage. 132: 250–256. DOI: 10.1016/j.jenvman.2013.10.02210.1097/00010694-196412000-00004Search in Google Scholar

Csuzdi C., Pop V. & Pop A. 2011. The earthworm fauna of the Carpathian Basin with new records and description of three new species (Oligochaeta: Lumbricidae). Zool. Anz. 250 (1): 2–18. DOI: 10.1016/j.jcz.2010.10.00110.1016/j.jcz.2010.10.001Search in Google Scholar

Curry J.P. 2004. Factors affecting the abundance of earthworms in soils, Chapter 6, pp. 91–113Edwards C.A. (ed.), Earthworm Ecology, 2nd ed., CRC Press LLC, Boca Raton, 448 pp. ISBN: 0-8493-1819-X10.1201/9781420039719.pt3Search in Google Scholar

de Vries F.T., Thébault E., Liiri M., Birkhofer K., Tsiafouli M.A., Bjornlund L., Jorgensen H.B., Brady M.V., Christensen S., de Ruiter P.C., d’Hertefeldt T., Frouz J., Hedlund K., Hemerik L., Hol W.H.G., Hotes S., Mortimer S.R., Setälä H., Sgardelis S.P., Uteseny K., van der Putten W., Wolters V. & Bardgett R.D. 2013. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. USA 110 (35) 14296–14301. DOI: 10.1073/pnas.130519811010.1073/pnas.1305198110Search in Google Scholar PubMed PubMed Central

Dick R.P., Breakwell D.P. & Turco R. F. 1996. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators, Chapter 15, pp. 247–271. DOI: 10.2136/sssaspecpub49. c15Doran J.W. & Jones A.J. (eds), Methods for Assessing Soil Quality, Soil Science Society of America, Spec. Publ. 49, Madison, Wisconsin, 410 pp. ISBN: 0-89118-826-610.2136/sssaspecpub49. c15Search in Google Scholar

Edwards C.A. (ed.) 2004. Earthworm Ecology. CRC Press, Boca Raton, Fl, /456 pp. ISBN: 9780849318191Search in Google Scholar

Edwards C.A. & Bohlen P.J. 1996. The Biology and Ecology of Earthworms. Publ. Chapman and Hall, London, 426 pp. ISBN: 0412561603, 9780412561603Search in Google Scholar

Gormsen D., Hedlund K., Korthals G.W., Mortimer S.R., Pižl V., Smilauerova M. & Sugg E. 2004. Management of plant communities on set-aside land and its effects on earthworm communities. Eur. J. Soil Biol. 40 (3-4) 123–128. DOI: 10.1016/j.ejsobi.2004.08.00110.1016/j.ejsobi.2004.08.001Search in Google Scholar

Ivask M., Kuu A., Meriste M., Truu J., Truu M. & Vaater V. 2008. Invertebrate communities (Annelida and epigeic fauna) in three types of Estonian cultivated soils. Eur. J. Soil Biol. 44(5-6) 532–540. DOI: 10.1016/j.ejsobi.2008.09.00510.1016/j.ejsobi.2008.09.005Search in Google Scholar

Kasprzak K. 1986. Sk˛aposzczety glebowe III, Rodzina: Dżdżownice (Lumbricidae). Series: Klucze do oznaczania bezkręgowców Polski, tom 6. PAN, Warszawa, 187 pp. ISBN: 8301061677, 9788301061678Search in Google Scholar

Kasprzak K. 1989. Zoogeography and habitat distribution of earthworms (Lumbricidae) and enchytraeids (Enchytraeidae) of the Carpathian Mountains (Poland). Misc. Zool. 13: 37– 44.Search in Google Scholar

Kladivko E.J. 2001. Tillage system and soil ecology. Soil Till. Res. 61: 61–76.10.1016/S0167-1987(01)00179-9Search in Google Scholar

Klute A. & Dirksen C. 1986. Water retention. Laboratory methods, Chapter 26, pp. 635–662. DOI: 10.2136/sssabookser5.1.2ed. c26Klute A. (ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd ed., series Agronomy, Number 9 (Part 1), SSSA Book Series 5, American Society of Agronomy, Madison, Wisconsin, USA, 1188 pp. ISBN-13: 978-0-89118-811-7, ISBN-10: 0-89118-811-810.2136/sssabookser5.1.2ed. c26Search in Google Scholar

Kostecka J. & Skoczeń S. 1993. Earthworm (Oligochaeta: Lumbricidae) populations in four types of beech wood Fagetum carpaticum in the Bieszczady National Park (south-eastern Poland). Part I. Species composition, diversity, dominance, frequency and associations. Acta Zool. Cracov. 36 (1) 1–13. ISBN: 83-900337-8-XSearch in Google Scholar

Lee K.E. 1985. Earthworms their Ecology and Relationships With Soils and Land Use. Academic Press, Sydney, 411 pp. ISBN: 0124408605, 9780124408609Search in Google Scholar

Monroy F., Aira M., Dominguez J. & Velando A., 2006. Seasonal population dynamics of Eisenia fetida (Savigny, 1826) (Oligochaeta, Lumbricidae) in the field. Compt. Rend. Biol. 329 (11) 912–915. DOI: 10.1016/j.crvi.2006.08.00110.1016/j.crvi.2006.08.001Search in Google Scholar

Ouellet G., Lapen D.R., Topp E., Sawada M. & Edwards M. 2008. A heuristic model to predict earthworm biomass in agroecosystems based on selected management and soil properties. Appl. Soil Ecol. 39 (1) 35–45. DOI: 10.1016/j.apsoil.2007.11. 00310.1016/j.apsoil.2007.11. 003Search in Google Scholar

Paoletti M.G. 1999. The role of earthworms for assessment of sustainability and as bioindicators. Agr. Ecosyst. Environ. 74 (1-3) 137–155. DOI: 10.1016/S0167-8809(99)00034-110.1016/S0167-8809(99)00034-1Search in Google Scholar

Pelosi C., Pey B., Hedde M., Caro G., Capowiez Y., Guernion M., Peigné J., Piron D., Bertrand M. & Cluzeau D. 2014. Reducing tillage in cultivated fields increases earthworm functional diversity. Appl. Soil Ecol. 83: 79–87. DOI: 10.1016/j.apsoil.2013.10.00510.1016/j.apsoil.2013.10.005Search in Google Scholar

Pižl V. 2002. Žížaly České republiky [Earthworms of the Czech Republic]. Monografické č. seriálu: Sborník přírodovědného klubu v Uherském Hradišti. Supplementum 9: 154 pp. ISBN: 80-86485-04-8Search in Google Scholar

Pižl V. & Stary J. 2001. The effects of mountains meadow management on soil fauna communities (on example of earthworms and oribatid mites). Silva Gabreta 7 87–96.Search in Google Scholar

Plisko D.J. 1973. Lumbricidae — Dżdżownice (Annelida: Oligochaeta) Fauna Polski – Fauna Poloniae 1, PWN, Warszawa, 156 pp.Search in Google Scholar

Postma-Blaauw M.B., de Goede R.G.M., Bloem J., Faber J.H. & Brussaard L. 2012. Agricultural intensification and deintensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria. Appl. Soil Ecol. 57: 39–49. DOI: 10.1016/j.apsoil. 2012.02.01110.1016/j.apsoil. 2012.02.011Search in Google Scholar

Pulleman M., Creamer R., Hamer U., Helder J., Pelosi C., Pérés G. & Rutgers M. 2012. Soil biodiversity, biological indicators and soil ecosystem services-an overview of European approaches. Curr. Opin. Environ. Sustain. 4 (5): 529–538. DOI: 10.1016/j.cosust.2012.10.00910.1016/j.cosust.2012.10.009Search in Google Scholar

Römbke J., Jänsch S. & Didden W. 2005. The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol. Environ. Safe. 62 (2) 249–265. DOI: 10.1016/j.ecoenv.2005.03.02710.1016/j.ecoenv.2005.03.027Search in Google Scholar PubMed

Rożen A. 1982. The annual cycle in populations of earthworms (Lumbricidae, Oligochaeta) in three types of oak-hornbeam of the Niepolomicka Forest. I. Species composition, dominance, frequency and associations. Pedobiologia 23: 199–208.Search in Google Scholar

European Union’s European Agricultural Fund 2015. The Rural Development Programme (RDP), 2014–2020. [Program Rozwoju Obszarów Wiejskich na lata 2014 – 2020 (PROW 2014-2020)] (accessed 26.01.2015).Search in Google Scholar

Schmidt O. 2001. Time limited hand sorting for long-term monitoring of Earthworm populations. Pedobiologia 45 (1) 69– 83. DOI: 10.1078/0031-4056-0006910.1078/0031-4056-00069Search in Google Scholar

Skiba S. 2008. Some problems of the soil classification of the Carpathian mountain soils. Gruntoznavstvo / Soil Science 9 (3-4): 165–168.Search in Google Scholar

van Eekeren N., Bommele L., Bloem J., Schouten T., Rutgers M., de Goede R., Reheul D. & Brussaard L. 2008. Soil biological quality after 36 years of ley-arable cropping, permanent grassland and permanent arable cropping. Appl. Soil Ecol. 40 (3) 432–446. DOI: 10.1016/j.apsoil.2008.06.01010.1016/j.apsoil.2008.06.010Search in Google Scholar

WRB 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015World Soil Resources Reports 106, FAO, 2014, 192 pp. ISBN: 978-92-5-108369-7Search in Google Scholar

Received: 2015-7-28
Accepted: 2016-2-3
Published Online: 2016-4-20
Published in Print: 2016-3-1

© 2016 Institute of Zoology, Slovak Academy of Sciences

Downloaded on 29.11.2023 from
Scroll to top button