Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 20, 2016

Phylogenetic relationships and Y genome origin in Kengyilia (Triticeae: Poaceae) based on single copy gene DMC1

Gang Gao, Zi-lin Tang, Jia-bin Deng, Xue-mei Gou, Qian Wang, Yan Zhang, Chun-bang Ding, Li Zhang, Yong-hong Zhou and Rui-wu Yang
From the journal Biologia

Abstract

To investigate the phylogenetic relationships among Kengyilia and related diploid genera, the genome donor of Kengyilia, and the evolutionary history of polyploid Kengyilia species, disrupted meiotic cDNA1 (DMC1) sequences were analyzed for 11 Kengyilia species, together with 34 diploid taxa from 12 monogenomic genera. Sequence diversity and genealogical analysis suggested that (1) the St and P genomes were donated by Pseudoroegneria and Agropyron, respectively; (2) phylogenetic analyses separated the Y sequences from the St sequences, it confirmed that St and Y genome in Kengyilia species have originated from different donors; (3) the St genome of Kengyilia had several origins and diverse species of Pseudoroegneria might have taken part in the formation of polyploid species of Kengyilia.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31270243). We would like to specially thank the American National Plant Germplasm System for providing some of the seeds.

References

Bothmer R. & Salomon B. 1994. Triticeae: a tribe for food, feed and fun, pp. 1–12. In: Wang R.R.C., Jensen K.B. & Jaussi C. (eds), Proceedings of the 2nd international Triticeae symposium. Utah Logan Press.Search in Google Scholar

Chen Z.J. & Pikaard C.S. 1997. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. USA 94: 3442–3447.10.1073/pnas.94.7.3442Search in Google Scholar

Comai L., Tyaqi A.P., Winter K., Holmes-Davis R. & ReynoldsS.H. 2000. Phenotypic instability and rapid gene silencingin newly formed Arabidopsis allotetraploids. Plant Cell 12:1551–1567.10.1105/tpc.12.9.1551Search in Google Scholar

Cui L., Wall P.K., Leebens-Mack J.H., Lindsay B.G., Soltis D.E., et al., 2006. Widespread genome duplications throughout thehistory of flowering plants. Genome Res. 16: 738–749.10.1101/gr.4825606Search in Google Scholar

Dewey D.R. 1984. The genomic system of classification as a guideto intergeneric hybridization with the perennial Triticeae, pp. 209–279. In: Gustafson J.P. (ed.), Gene Manipulation inPlant Improvement Plenem Press, New York.10.1007/978-1-4613-2429-4_9Search in Google Scholar

Doyle J.J., 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Search in Google Scholar

Fan X., Sha L.N., Dong Z.Z., Zhang H.Q., Kang H.Y., Wang Y., Wang X.L., Zhang L., Ding C.B., Yang R.W., Zheng Y.L. & Zhou Y.H. 2013. Phylogenetic relationships and Y genome origin in Elymus L. sensu lato (Triticeae; Poaceae) based on single-copy nuclear Acc1 and Pgk1 gene sequences. Mol. Phylogenet. Evol. 69: 919–928.10.1016/j.ympev.2013.06.012Search in Google Scholar

Feldman M. & Levy A.A. 2009. Genome evolution in allopolyploid wheat a revolutionary reprogramming followed by gradual changes. J. Genet. Genomics 36: 511–518.10.1016/S1673-8527(08)60142-3Search in Google Scholar

Fu Y.X. & Li W.H., 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709.10.1093/genetics/133.3.693Search in Google Scholar

Hudson R.R. 1990. Gene genealogies and the coalescent process, pp. 1–44. In: Futuyma D. & Antonovics J. (eds), Oxford Surveys in Evolutionary Biology. Oxford University Press, New York.Search in Google Scholar

Jensen K.B. 1990. Cytology and taxonomy of Elymus kengii, E. grandiglumis, and E. batalinii (Poaceae: Triticeae). Genome 33: 668–673.10.1139/g90-099Search in Google Scholar

Jensen K.B. 1996. Genome analysis of Eurasian Elymus thoroldianus, E. melantherus, and E. kokonoricus (Poaceae: Triticeae). Int. J. Plant Sci. 157: 136–141.10.1086/297330Search in Google Scholar

Jensen K.B. & Chen S.L. 1992. An overview systematic relationships of Elymus and Roegneria. Hereditas 116: 127–132.10.1111/j.1601-5223.1992.tb00811.xSearch in Google Scholar

Lee H.S. & Chen Z.J. 2001. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc. Natl. Acad. Sci. USA. 98: 6753–6758.10.1073/pnas.121064698Search in Google Scholar

Liu Q.L., Ge S., Tang H., Zhang X., Zhu G., et al., 2006. Phylogenetic relationships inElymus (Poaceae, Triticeae) based on the nuclear ribosomal transcribed spacer and chloroplast trnL-F sequences. New Phytol. 170: 411–420.10.1111/j.1469-8137.2006.01665.xSearch in Google Scholar

Löve A. 1984. Conspectuse of Triticeae. Feddes Rep.95: 425–524.10.1002/fedr.4910950702Search in Google Scholar

Lu B.R. & Bothmer R. 1990, Genomic constitution of Elymus parviglumis and E. pseudonutans, Triticeae (Poaceae). Hereditas 113: 109–119.10.1111/j.1601-5223.1990.tb00074.xSearch in Google Scholar

Mason-Gamer R.J., Orme N.L. & Anderson C.M. 2002. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45: 991–1002.10.1139/g02-065Search in Google Scholar

Mason-Gamer R.J., Burns M.M. & Naum M. 2005. Polyploidy, introgression, and complex phylogenetic patterns within Elymus. Czech J. Genet. Plant Breed. 41: 21–26.10.17221/6127-CJGPBSearch in Google Scholar

Nei M. & LiW.H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 76: 5269–5273.10.1073/pnas.76.10.5269Search in Google Scholar

Okito P., Mott I.W., Wu Y. & Wang R.R. 2009. A Y genome specific STS marker in Pseudoroegneria and Elymus species (Triticeae: Gramineae). Genome 52: 391–400.10.1139/G09-015Search in Google Scholar

Ozkan H., Levy A.A. & Feldman M. 2001. Allopolyploidy induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13: 1735–1747.10.1105/TPC.010082Search in Google Scholar

Petersen G. & Seberg O. 2002. Molecular evolution and phylogenetic application of DMC1. Mol. Phylogenet. Evol. 22: 43–50.10.1006/mpev.2001.1011Search in Google Scholar

Rozas J., Sánchez-DelBarrio J.C., Messeguer X. & Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.10.1093/bioinformatics/btg359Search in Google Scholar

Salina E.A., Numerova O.M., Ozkan H. & Feldman M. 2004. Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat. Genome 47: 860–867.10.1139/g04-044Search in Google Scholar

Shaked H., Kashkush K., Ozkan H., Feldman M. & Levy A.A. 2001. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13: 1749–1759.10.1105/TPC.010083Search in Google Scholar

Sun G.L., Ni Y. & Daley T. 2008. Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Mol. Phylogenet. Evol. 46: 897– 907.10.1016/j.ympev.2007.12.024Search in Google Scholar

Sun G.L. & Komatsuda T. 2010. Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. Mol. Phylogenet. Evol. 56: 727–733.10.1016/j.ympev.2010.03.037Search in Google Scholar

Tajima F. 1989. Statistical method for testing the neutral mutationof hypothesis by DNA polymorphism. Genetics 123: 585–595.10.1093/genetics/123.3.585Search in Google Scholar

Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Moleculare volutionary genetics analysis using maximum likelihood, evolutionary distance, and maximumparsimony methods. Mol. Biol. Evol. 28: 2731– 2739.10.1093/molbev/msr121Search in Google Scholar

Torabinejad J. & Mueller R.J. 1993. Genome constitution of the Australian hexaploid grass Elymus scabrus (Poaceae, Triticeae). Genome 36: 147–151.10.1139/g93-018Search in Google Scholar

Wang R.R.C., Dewey D.R. & Hsiao C. 1986. Genomic analysis of the tetraploid Pseudoroegneria tauri. Crop Sci. 26: 723–727.10.2135/cropsci1986.0011183X002600040018xSearch in Google Scholar

Wang R.R.C., Bothmer R.V., Dvorak J., Fedak G., Linde-Laursen I., et al. 1994. Genome symbols in the Triticeae (Poaceae), pp. 29–34. In: Wang R.R.C., Jensen K.B. & Jaussi C. (eds), Proc. 2nd Intern. Triticeae Symp, Logan, Utah, USA.Search in Google Scholar

Watterson G.A. 1975. On the number of segregation sites in genetic models without ecombination. Theor. Popul. Biol.7: 256–276.10.1016/0040-5809(75)90020-9Search in Google Scholar

Yang J.L., Yen C. & Baum B.R. 1992. Kengyilia: synopsis and key to species. Hereditas 116: 25–28.10.1111/j.1601-5223.1992.tb00795.xSearch in Google Scholar

Yen C. & Yang J.L. 1990. Kengyilia gobicola, a new taxon from west China. Can. J. Bot. 68: 1894–1897.10.1139/b90-248Search in Google Scholar

Yen C., Yang J.L. & Baum B.R. 2006. Biosystematics of Triticeae. Volume 3. Chinese Agriculture Press, Beijing.Search in Google Scholar

Zhang L., Zheng Y.L., Wei Y.M., Liu S.G. & Zhou Y.H. 2005. The genetic diversity and similarities among Kengyilia species based on random amplified microsatellite polymorphism. Genet. Resour. Crop Evol. 52: 1011–1017.10.1007/s10722-004-6087-zSearch in Google Scholar

Zeng J., Cao G., Liu J., Zhang H.Q. & Zhou Y.H. 2008a. Cbanding analysis of eight species of Kengyilia (Poaceae: Triticeae). J. Appl. Genet. 49: 11–21.10.1007/BF03195244Search in Google Scholar

Zeng J., Zhang L., Fan X., Zhang H.Q., Yang R.W., et al. 2008b. Phylogenetic analysis of Kengyilia species based on nuclear ribosomal DNA internal transcribed spacer sequences. Biol. Plantarum 52: 231–236.10.1007/s10535-008-0051-2Search in Google Scholar

Zhang X.Q., Yang J.L., Yen C., Zheng Y.L. & Zhou Y.H. 2000. Cytogenetic and systematic analysis of Kengyilia gobicola, K. zhaosuensis and K. batalinii var. nana (Poaceae). Genet. Resour. Crop Evol. 47: 451–454.10.1023/A:1008788017938Search in Google Scholar

Zhang X.Q., Yen C., Yang J.L. & Yen Y. 1998. Cytogenetic analyses in Kengyilia laxiflora (Poaceae, Triticeae). Plant Syst. Evol. 212: 79–86.10.1007/BF00985222Search in Google Scholar

Zhou Y.H. 1994. Study on karyotypes of 5 species of Kengyilia. Guihaia 14: 163–169.Search in Google Scholar

Zhou Y.H., Zheng Y.L., Yang J.L., Yen C. & Jia J.Z. 2000. Relationships among Kengyilia species assessed by RAPD markers. Acta Phytotaxon. Sin. 38: 515–521.Search in Google Scholar

Received: 2015-6-6
Accepted: 2015-11-16
Published Online: 2016-4-20
Published in Print: 2016-3-1

© 2016 Institute of Botany, Slovak Academy of Sciences