Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 20, 2016

Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development

Subramanian Muthamil and Shunmugiah Karutha Pandian
From the journal Biologia

Abstract

In this study, anti-infective potential of the medicinal plant Murraya koenigii was assessed through in vitro assays and microscopic analysis. The methanolic leaf extract of M. koenigii significantly inhibited the major virulence factors of Candida albicans, such as biofilm formation, yeast-to-hyphal transition, cell surface hydrophobicity, hemolysin production and filamentation. Further purification and molecular characterization of the active lead is expected to give a novel anticandidal agent for the treatment of Candida infection.

Acknowledgements

The authors thankfully acknowledge the Bioinformatics Infrastructure Facility funded by Department of Biotechnology, Government of India [Grant No. BT/BI/25/015/2012 (BIF)], the instrumentation facility provided by Department of Science and Technology, Government of India through PURSE [Grant No. SR/S9Z-23/2010/42 (G)] & FIST (Grant No. SR-FST/LSI-087/2008), and University Grants Commission (UGC), New Delhi, through SAP-DRS1 [Grant No. F.3-28/2011 (SAP-II)]. SM thanks UGC for financial assistance in the form of a Basic Scientific Research Fellowship [Sanction No. F.25-1/2013-14 (BSR)/7-326/2011 (BSR) dt 30.05.2014].

References

Alcazar-Fuoli L., Mellado E., Garcia-Effron G., Lopez J.F., Grimalt J.O. Cuenca-Estrella J.M. & Rodriguez-Tudela J.L. 2008. Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids 73: 339–347.10.1016/j.steroids.2007.11.005Search in Google Scholar

Al-Fattani M.A. & Douglas L.J. 2004. Penetration of Candida biofilms by antifungal agents. Antimicrob. Agents Chemother. 48: 3291–3297.10.1128/AAC.48.9.3291-3297.2004Search in Google Scholar

Alnuaimi A.D., O’Brien-Simpson N.M., Reynolds E.C. & McCullough M.J. 2013. Clinical isolates and laboratory reference Candida species and strains have varying abilities to form biofilms. FEMS Yeast Res. 13: 689–699.10.1111/1567-1364.12068Search in Google Scholar

Alshami I. & Alharbi A.E. 2014. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections. Asian Pac. J. Trop. Biomed. 4: 104–108.10.1016/S2221-1691(14)60217-3Search in Google Scholar

Arif T., Bhosale J.D., Kumar N., Mandal T.K. & Bendre R.S., Lavekar G.S. & Dabur R. 2009. Natural products-antifungal agents derived from plants. J. Asian Nat. Prod. Res. 11: 621–638.10.1080/10286020902942350Search in Google Scholar

Bakkiyaraj D., Nandhini J.R., Malathy B. & Pandian S.K. 2013. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 29: 929–937.10.1080/08927014.2013.820825Search in Google Scholar

Braga P.C., Culici M., Alfieri M. & Dal Sasso M. 2008. Thymol inhibits Candida albicans biofilm formation and mature biofilm. Int. J. Antimicrob. Agents 31: 472–477.10.1016/j.ijantimicag.2007.12.013Search in Google Scholar

Brown D.H., Giusani A.D., Chen X. & Kumamoto C.A. 1999. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol. 34: 651–662.10.1046/j.1365-2958.1999.01619.xSearch in Google Scholar

Calderone R.A. & Fonzi W.A. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9: 327–335.10.1016/S0966-842X(01)02094-7Search in Google Scholar

Chaieb K., Zmantar T., Ksouri R., Hajlaoui H., Mahdouani K., Abdelly C. & Bakhrouf A. 2007. Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 50: 403–406.10.1111/j.1439-0507.2007.01391.xSearch in Google Scholar PubMed

Chandra J., Kuhn D.M., Mukherjee P.K., Hoyer L.L., McCormick T. & Ghannoum M.A. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183: 5385–5394.10.1128/JB.183.18.5385-5394.2001Search in Google Scholar

Chandra J., Mukherjee P.K & Ghannoum M.A. 2012. Candida biofilms associated with CVC and medical devices. Mycoses 55: 46–57.10.1111/j.1439-0507.2011.02149.xSearch in Google Scholar

Chevalier M., Medioni E. & Precheur I. 2012. Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts. J. Med. Microbiol. 61: 1016–1022.10.1099/jmm.0.041699-0Search in Google Scholar

Cowan M.M. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564–582.10.1128/CMR.12.4.564Search in Google Scholar

Das K., Tiwari R. K. S. & Shrivastava D. K. 2010. Techniques for evaluation of medicinal plant products as antimicrobial agent: current methods and future trends. J. Med. Plants Res. 4: 104–111.Search in Google Scholar

Denning D.W. 2003. Echinocandin antifungal drugs. Lancet 362: 1142–1151.10.1016/S0140-6736(03)14472-8Search in Google Scholar

Fan D., Coughlin L.A., Neubauer M.M., Kim J., Kim M.S., Zhan X., Simms-Waldrip T.R., Xie Y., Hooper L.V. & Koh A.Y. 2015. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21: 808–814.10.1038/nm.3871Search in Google Scholar PubMed PubMed Central

Ghannoum M.A. & Rice L.B. 1999. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12: 501–517.10.1128/CMR.12.4.501Search in Google Scholar PubMed PubMed Central

Inabo H.I. 2006. The significance of Candida infections of medical implants. Sci. Res. Essay 1: 008–010.Search in Google Scholar

Kanafani Z.A. & Perfect J.R. 2008. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46: 120–128.10.1086/524071Search in Google Scholar PubMed

Khan M.S. & Ahmad I. 2012. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol. 140: 416–423.10.1016/j.jep.2012.01.045Search in Google Scholar PubMed

Lu Y., Su C., Wang A. & Liu. H. 2011. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol. 9: e1001105.10.1371/journal.pbio.1001105Search in Google Scholar PubMed PubMed Central

Mandal S.M., Migliolo L., Franco O.L. & Ghosh A.K. 2011. Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides 32: 1741–1747.10.1016/j.peptides.2011.06.020Search in Google Scholar

Manns J.M., Mosser D.M. & Buckley H.R. 1994. Production of a hemolytic factor by Candida albicans. Infect. Immun. 62: 5154–5156.10.1128/iai.62.11.5154-5156.1994Search in Google Scholar

Martinez J.P., Lopez-Ribot J.L., GilM.L., Sentandreu R. & Ruiz-Herrera J. 1990. Inhibition of the dimorphic transition of Candida albicans by the ornithine decarboxylase inhibitor 1,4-diaminobutanone: alterations in the glycoprotein composition of the cell wall. J. Gen. Microbiol. 136: 1937–1943.10.1099/00221287-136-10-1937Search in Google Scholar

Mathur A., Dua V.K. & Prasad G.B.K.S. 2010. Antimicrobial activity of leaf extracts of Murraya koenigii against aerobic bacteria associated with bovine mastitis. Int. J. Chem. Environ. Pharm. Res. 1: 12–16.Search in Google Scholar

Mayer F.L., Wilson D. & Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4: 119–128.10.4161/viru.22913Search in Google Scholar

Messier C., Epifano F., Genovese S. & Grenier D. 2011. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine 18: 380–383.10.1016/j.phymed.2011.01.013Search in Google Scholar

Miller M.G. & Johnson A.D. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110: 293–302.10.1016/S0092-8674(02)00837-1Search in Google Scholar

Mohan S., Abdelwahab S.I., Cheah S.C., Sukari M.A., Syam S., Shamsuddin N. & Mustafa M.R. 2013. Apoptosis effect of girinimbine isolated from Murraya koenigii on lung cancer cells in vitro. Evid. Based Complement. Alternat. Med. 2013: 689865.10.1155/2013/689865Search in Google Scholar

Morales D.K., Grahl N., Okegbe C., Dietrich L.E., Jacobs N.J. & Hogana D.A. 2013. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 4: e00526-12.10.1128/mBio.00526-12Search in Google Scholar

Morrell M., Fraser V.J. & Kollef M.H. 2005. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob. Agents Chemother. 49: 3640–3645.10.1128/AAC.49.9.3640-3645.2005Search in Google Scholar

Motsei M.L., Lindsey K.L., van Staden J. & Jager A.K. 2003. Screening of traditionally used South African plants for antifungal activity against Candida albicans. J. Ethnopharmacol. 86: 235–241.10.1016/S0378-8741(03)00082-5Search in Google Scholar

Mukherjee P.K., Chandra J., Kuhn D.M. & Ghannoum M.A. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 71: 4333–4340.10.1128/IAI.71.8.4333-4340.2003Search in Google Scholar PubMed PubMed Central

Nadeem S.G., Shafiq A., Hakim S.T., Anjum Y. & Kazm S.U. 2013. Effect of growth media, pH and temperature on yeastto-hyphal transition in Candida albicans. Open J. Med. Microbiol. 3: 185–192.10.4236/ojmm.2013.33028Search in Google Scholar

Nithyanand P., Beema Shafreen R.M., Muthamil S. & Pandian S.K. 2015. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol.Res. 179: 20–28.10.1016/j.micres.2015.06.009Search in Google Scholar PubMed

Odds F.C. 1988. Activity of cilofungin (LY121019) against Candida species in vitro. J. Antimicrob. Chemother. 22: 891–897.10.1093/jac/22.6.891Search in Google Scholar PubMed

Onyewu C., Blankenship J.R., Del Poeta M. & Heitman J. 2003. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 47: 956–964.10.1128/AAC.47.3.956-964.2003Search in Google Scholar PubMed PubMed Central

Padmavathi A.R., Bakkiyaraj D., Thajuddin N. & Pandian S.K. 2015. Effect of 2,4-di-tert-butylphenol on growth and biofilm formation by an opportunistic fungus Candida albicans. Biofouling 31: 565–574.10.1080/08927014.2015.1077383Search in Google Scholar PubMed

Pfaller M.A. & Diekema D.J. 2004. Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 42: 4419–4431.10.1128/JCM.42.10.4419-4431.2004Search in Google Scholar PubMed PubMed Central

Pfaller M.A. 2012. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 125 (Suppl. 1): S3–S13.10.1016/j.amjmed.2011.11.001Search in Google Scholar PubMed

Pinto E., Vale-Silva L., Cavaleiro C. & Salgueiro L. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol.58: 1454–1462.10.1099/jmm.0.010538-0Search in Google Scholar PubMed

Rahman M.M. & Gray A.I. 2005. A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry 66: 1601–1606.10.1016/j.phytochem.2005.05.001Search in Google Scholar PubMed

Ramage G., Saville S.P., Thomas D.P. & Lopez-Ribot J.L. 2005. Candida biofilms: an update. Eukaryot. Cell 4: 633–638.10.1128/EC.4.4.633-638.2005Search in Google Scholar PubMed PubMed Central

Rasmussen T.B. & Givskov M. 2006. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol. 296: 149–161.10.1016/j.ijmm.2006.02.005Search in Google Scholar PubMed

Raut J.S., Chauhan N.M., Shinde R.B. & Karuppayil S.M. 2013a. Inhibition of planktonic and biofilm growth of Candida albicans reveals novel antifungal activity of caffeine. J. Med. Plants Res. 7: 777–782.Search in Google Scholar

Raut J.S., Shinde R.B., Chauhan N.M. & Karuppayil S.M. 2013b. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 29: 87–96.10.1080/08927014.2012.749398Search in Google Scholar PubMed

Reena T., Prem R., Deepthi M.S., Ramachanran R.B. & Sujatha S. 2013. Comparative effect of natural commodities and commercial medicines against oral thrush causing fungal organism of Candida albicans. Sci. J. Clin. Med. 2: 75–80.10.11648/j.sjcm.20130203.13Search in Google Scholar

Rossoni R.D., Barbosa J.O., Vilela S.F., Jorge A.O. & Junqueira J.C. 2012. Comparison of the hemolytic activity between Candida albicans and non-albicans Candida species. Braz. Oral Res. 27: 484–489.10.1590/S1806-83242013000600007Search in Google Scholar PubMed

Salini R. & Pandian S.K. 2015. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathog. Dis. 73: ftv038.10.1093/femspd/ftv038Search in Google Scholar PubMed

Salini R., Sindhulakshmi M., Poongothai T. & Pandian S.K. 2015. Inhibition of quorum sensing mediated biofilm development and virulence in uropathogens by Hyptis suaveolens. Antonie Van Leeuwenhoek 107: 1095-1106.10.1007/s10482-015-0402-xSearch in Google Scholar PubMed

Sanguinetti M., Posteraro2 B. & Lass-Florl C. 2015. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 58: 2–13.10.1111/myc.12330Search in Google Scholar PubMed

Selvamani S. & Balamurugan S. 2014. Evaluation of the antimicrobial potential of various solvent extracts of Murraya koenigii (Linn.) Spreng leaves. Int. J. Curr. Microbiol. App. Sci. 3: 74–77.Search in Google Scholar

Shafreen R.M., Muthamil S. & Pandian S.K. 2014. Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives. Appl. Microbiol. Biotechnol. 98: 6775–6785.10.1007/s00253-014-5909-ySearch in Google Scholar

Si H., Hernday A.D., Hirakawa M.P., Johnson A.D. & Bennett R.J. 2013. Candida albicans white and opaque cells undergo distinct programs of filamentous growth. PLoS Pathog. 9: e1003210.10.1371/journal.ppat.1003210Search in Google Scholar PubMed PubMed Central

Sivasankar C., Ponmalar A., Bhaskar J.P. & Pandian S.K. 2015. Glutathione as a promising anti-hydrophobicity agent against Malassezia spp. Mycoses 58: 620–631.10.1111/myc.12370Search in Google Scholar PubMed

Soll D.R. 2008. Candida biofilms: is adhesion sexy? Curr. Biol. 18: R717–R720.10.1016/j.cub.2008.07.014Search in Google Scholar PubMed

Subramenium G.A., Vijayakumar K. & Pandian S.K. 2015a. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J. Med. Microbiol. 64: 879–890.10.1099/jmm.0.000105Search in Google Scholar PubMed

Subramenium G.A., Viszwapriya D., Iyer P.M., Balamurugan K. & Pandian S.K. 2015b. covR mediated antibiofilm activity of 3-furancarboxaldehyde increases the virulence of Group A Streptococcus. PLoS One 10: e0127210.10.1371/journal.pone.0127210Search in Google Scholar PubMed PubMed Central

Taweechaisupapong S., Ngaonee P., Patsuk P., Pitiphat W. & Khunkitti W. 2012. Antibiofilm activity and post antifungal effect of lemongrass oil on clinical Candida dubliniensis isolate. South Afr. J. Bot. 78: 37–43.10.1016/j.sajb.2011.04.003Search in Google Scholar

Tsang P.W., Wong A.P., Yang H.P. & Li N.F. 2013. Purpurin triggers caspase-independent apoptosis in Candida dubliniensis biofilms. PLoS One 8: e86032.10.1371/journal.pone.0086032Search in Google Scholar PubMed PubMed Central

Vediyappan G., Dumontet V., Pelissier F. & d’Enfert C. 2013. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS One 8: e74189.10.1371/journal.pone.0074189Search in Google Scholar PubMed PubMed Central

Yang Y.L. 2003. Virulence factors of Candida species. J. Microbiol. Immunol. Infect. 36: 223–228.Search in Google Scholar

Abbreviations
CLSM

confocal laser scanning microscopy

MBIC

minimum biofilm inhibitory concentration

MKM

Murraya koenigii methanolic

MTP

microtiter plate

PBS

phosphate buffered saline

SDA

Sabouraud dextrose agar

SEM

scanning electron microscopy

XTT

2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide

YEPD

yeast extract peptone dextrose

Received: 2015-12-21
Accepted: 2016-3-18
Published Online: 2016-4-20
Published in Print: 2016-3-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences