Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 20, 2016

Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes

  • Smita Pal , Asifa Qureshi EMAIL logo and Hemant J. Purohit
From the journal Biologia


Membrane biofouling is a common and emerging problem, where cells get cemented and create problems in industrial process. Frequent chemical cleaning used for the treatment of biofouled membrane shortens the membrane life time and creates ‘stress’ to existing microflora to trigger more exopolysaccharides production, which becomes the principle cause of biofouling. To understand safe and environmentally feasible antifouling strategies, key biofilm forming representative bacteria isolated from brackish and fresh water biofouled membranes were subjected to natural agents, such as vanillin (0.05–0.4 mg/mL) and salicylic acid (0.1–0.7 mg/mL). Salicylic acid (0.7 mg/mL) was found to be effective against only Pseudomonas group, whereas vanillin was remarkably potent against majority of the isolates because of structural mimicking with signalling autoinducer molecules. The present study showed that vanillin served as a good quorum quencher molecule as it inhibited 90% acyl homoserine lactones production at 0.3 mg/mL concentration in biosensor Chromobacterium violaceum CV026 strain and also inhibited 70% to > 90% biofilm formation in bacterial isolates. Biofilm formation and quorum sensing inhibition activities were validated by real-time quantitative PCR gene expression analysis in key representative membrane isolates. Vanillin served as antifouling natural agent towards broad spectrum community found on membranes.


The authors wish to thank Director, CSIR-NEERI, for support and inspiration, Clean Water; Sustainable Options: 12th plan CSIR network project (ESC0306, Activity 3.4.2) Biomolecules control biofouled membrane bacterial isolates 245 for providing funds, AcSIR and DST Inspire Fellowship awarded to SP.


Anand S., Singh D., Avadhanula M. & Marka S. 2014. Development and control of bacterial biofilms on dairy processing membranes. Compr. Rev. Food Sci. Food Saf. 13: 18–33.10.1111/1541-4337.12048Search in Google Scholar PubMed

Ashhab Al. A., Herzberg M. & Gillor O. 2014. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition. Water Res. 50: 341–349.10.1016/j.watres.2013.10.044Search in Google Scholar PubMed

Ben-Dov E., Ben-David E., Messalem R., Herzberg M. & Kushmaro A. 2015. Biofilm formation on RO membranes: the impact of seawater pretreatment. Desalination Water Treat. 57: 4741–4748.10.1080/19443994.2014.998294Search in Google Scholar

Bhardwaj P., Sharma A., Sagarkar S. & Kapley A. 2015. Mapping atrazine and phenol degradation genes in Pseudomonas sp. EGD-AKN5. Biochem. Eng. J. 102: 125–134.10.1016/j.bej.2015.02.029Search in Google Scholar

Bing W. & Anthony G. F. 2012. Microbial relevant fouling in membrane bioreactors: influencing factors, characterization, and fouling control. Membranes 2: 565–584.10.3390/membranes2030565Search in Google Scholar PubMed PubMed Central

Brackman G., Cos P., Maes L., Nelis H.J. & Coenye T. 2011. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob. Agents Chemother. 55: 2655–2661.10.1128/AAC.00045-11Search in Google Scholar PubMed PubMed Central

Cheong W.S., Kim S.R., Oh H.S., Lee S.H., Yeon K.M., Lee C.H. & Lee J.K. 2014. Design of quorum quenching microbial vessel to enhance cell viability for biofouling control in membrane bioreactor. J. Microbiol. Biotechnol. 24: 97–105.10.4014/jmb.1311.11008Search in Google Scholar PubMed

Choi A.H., Slamti L., Avci F.Y., Pier G.B. & Maira-Litrán T. 2009. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-β-1-6-N-acetylglucosamine, which is critical for biofilm formation. J. Bacteriol. 191: 5953–5963.10.1128/JB.00647-09Search in Google Scholar PubMed PubMed Central

Choo J.H., Rukayadi Y. & Hwang J.K. 2006. Inhibition of bacterial quorum sensing by vanilla extract. Lett. Appl. Microbiol. 42: 637–641.10.1111/j.1472-765X.2006.01928.xSearch in Google Scholar PubMed

Cramton S.E., Gerke C., Schnell N.F., Nichols W.W. & Götz F. 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67: 5427–5433.10.1128/IAI.67.10.5427-5433.1999Search in Google Scholar PubMed PubMed Central

Feng L., Wu Z. & Yu X. 2012. Quorum sensing in water and wastewater treatment biofilms. J. Environ. Biol. 34: 437–444.Search in Google Scholar

Fitzgerald D.J., Stratford M., Gasson M.J., Ueckert J., Bos A. & Narbad A. 2004. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J. Appl. Microbiol. 97: 104-113.10.1111/j.1365-2672.2004.02275.xSearch in Google Scholar PubMed

Gaddy J.A. & Actis L.A. 2009. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 4: 273–278.10.2217/fmb.09.5Search in Google Scholar PubMed PubMed Central

Hendrickx A.P., van Luit-Asbroek M., Schapendonk C.M., van Wamel W.J., Braat J.C., Wijnands L.M. & Willems R.J. 2009. SgrA, a nidogen-binding LPXTG surface adhesin implicated in biofilm formation, and EcbA, a collagen binding MSCRAMM, are two novel adhesins of hospital-acquired Enterococcus faecium. Infect. Immun. 77: 5097–5106.10.1128/IAI.00275-09Search in Google Scholar PubMed PubMed Central

Hong S.H., Hegde M., Kim J., Wang X., Jayaraman A. & Wood T.K. 2012. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat. Commun. 3: 613.10.1038/ncomms1616Search in Google Scholar PubMed PubMed Central

Huigens R.W., Richard J.J., Parise G., Ballard T.E., Zeng W., Deora R. & Melander C. 2007. Inhibition of Pseudomonas aeruginosa biofilm formation with bromoageliferin analogues. J. Am. Chem. Soc. 129: 6966–6967.10.1021/ja069017tSearch in Google Scholar PubMed

Kalia V.C. & Purohit H.J. 2011. Quenching the quorum sensing system: potential antibacterial drug targets. Crit. Rev. Microbiol. 37: 121–140.10.3109/1040841X.2010.532479Search in Google Scholar PubMed

Khan M., Danielsen S., Johansen K., Lorenz L., Nelson S. & Camper A. 2014. Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor. Biofouling 30: 153–167.10.1080/08927014.2013.852540Search in Google Scholar PubMed

De Kievit T.R., Gillis R., Marx S., Brown C. & Iglewski B.H. 2001. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl. Environ. Microbiol. 67: 1865–1873.10.1128/AEM.67.4.1865-1873.2001Search in Google Scholar PubMed PubMed Central

Kim S., Lee S., Hong S., Oh Y., Kweon J. & Kim T. 2009. Biofouling of reverse osmosis membranes: microbial quorum sensing and fouling propensity. Desalination 247: 303–315.10.1016/j.desal.2008.12.033Search in Google Scholar

Lade H., Paul D. & Kweon H.J. 2014. Isolation and molecular characterization of biofouling bacteria and profiling of quorum sensing signal molecules from membrane bioreactor activated sludge. Int. J. Mol. Sci. 15: 2255–2273.10.3390/ijms15022255Search in Google Scholar PubMed PubMed Central

Lagonenko L., Lagonenko A., & Evtushenkov A. 2013. Impact of salicylic acid on biofilm formation by plant pathogenic bacteria. J. Biol. Earth Sci. 3: B176–B181.Search in Google Scholar

Liu P., Huang Q. & Chen W. 2012. Heterologous expression of bacterial nitric oxide synthase gene: a potential biological method to control biofilm development in the environment. Can. J. Microbiol. 58: 336–344.10.1139/w11-141Search in Google Scholar

Magin C.M., Cooper S.P. & Brennan A.B. 2010. Non-toxic antifouling strategies. Materials Today 13: 36–44.10.1016/S1369-7021(10)70058-4Search in Google Scholar

Malaeb L., Le-Clech P., Vrouwenvelder J.S., Ayoub G.M. & Saikaly P.E. 2013. Do biological-based strategies hold promise to biofouling control in MBRs? Water Res. 47: 5447–5463.10.1016/j.watres.2013.06.033Search in Google Scholar PubMed

Marcato-Romain C.E., Pechaud Y., Paul E., Girbal-Neuhauser E. & Dossat-Létisse V. 2012. Removal of microbial multi-species biofilms from the paper industry by enzymatic treatments. Biofouling 28: 305–314.10.1080/08927014.2012.673122Search in Google Scholar PubMed

Meyer F., Paarmann D., D’Souza M., Olson R., Glass E.M., Kubal M., Paczian T., Rodriguez A., Stevens R., Wilke A., Wilkening J. & Edwards A.R. 2008. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9: 386.10.1186/1471-2105-9-386Search in Google Scholar PubMed PubMed Central

Ngarmsak M., Delaquis P., Toivonen P., Ngarmsak T., Ooraikul B. & Mazza G. 2006. Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes. J. Food Protect. 69: 1724–1727.10.4315/0362-028X-69.7.1724Search in Google Scholar

Nguyen T., Roddick F. A. & Fan L. 2012. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2: 804–840.10.3390/membranes2040804Search in Google Scholar PubMed PubMed Central

Nousiainen A.O., Björklöf K., Sagarkar S., Mukherjee S., Purohit H.J., Kapley A. & Jørgensen K.S. 2014 Atrazine degradation in boreal nonagricultural subsoil and tropical agricultural soil. J. Soils Sediments 14: 1179–1188.10.1007/s11368-014-0868-6Search in Google Scholar

Okolie C. & Chenia H.Y. 2013. Assessment of aquatic Aeromonas spp. isolates’ susceptibility to cinnamaldehyde, vanillin, and crude Kigelia africana fruit extracts. J. World Aquacult. Soc. 44: 486–498.10.1111/jwas.12059Search in Google Scholar

O’Toole G.A. & Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295–304.10.1046/j.1365-2958.1998.01062.xSearch in Google Scholar PubMed

Park S.K. & Hu J.Y. 2010. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality. J. Environ. Sci. Health 45: 968–977.10.1080/10934521003772386Search in Google Scholar PubMed

Pérez-Osorio A.C., Williamson K.S. & Franklin M.J. 2010. Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA (rRNA gene) ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection. J. Bacteriol. 192: 2991–3000.10.1128/JB.01598-09Search in Google Scholar PubMed PubMed Central

Piola R.F., Dafforn K.A. & Johnston E.L. 2009. The influence of antifouling practices on marine invasions. Biofouling 25: 633–644.10.1080/08927010903063065Search in Google Scholar PubMed

Ponnusamy K., Kappachery S., Thekeettle M., Song J.H. & Kweon J.H. 2013. Anti-biofouling property of vanillin on Aeromonas hydrophila initial biofilm on various membrane surfaces. World J. Microbiol. Biotechnol. 29: 1695–1703.10.1007/s11274-013-1332-2Search in Google Scholar PubMed

Ponnusamy K., Paul D. & Kweon J. H. 2009. Inhibition of quorum sensing mechanism and Aeromonas hydrophila biofilm formation by vanillin. Environ. Eng. Sci. 26: 1359–1363.10.1089/ees.2008.0415Search in Google Scholar

Qureshi A., Pal S., Ghosh S., Kapley A. & Purohit H.J. 2015. Antibiofouling biomaterials. Int. J. Recent Advances Multidis. Res. 2: 0677–0684.Search in Google Scholar

Schmittgen T.D. & Livak K.J. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101–1108.10.1038/nprot.2008.73Search in Google Scholar PubMed

Tan C.H., Koh K.S., Xie C., Zhang J., Tan X.H., Lee G.P., Zhou Y., Ng W.J., Rice S.A. & Kjelleberg S. 2015. Community quorum sensing signalling and quenching: microbial granular biofilm assembly. NPJ Biofilms Microbiomes 1: 15006.10.1038/npjbiofilms.2015.6Search in Google Scholar PubMed PubMed Central

Tang K., Zhang Y., Yu M., Shi X., Coenye T., Bossier P. & Zhang X.H. 2013. Evaluation of a new high-throughput method for identifying quorum quenching bacteria. Sci. Rep. 3: 2935.10.1038/srep02935Search in Google Scholar PubMed PubMed Central

Toledo-Arana A., Valle J., Solano C., Arrizubieta M.J., Cucarella C., Lamata M. & Lasa I. 2001. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 67: 4538–4545.10.1128/AEM.67.10.4538-4545.2001Search in Google Scholar PubMed PubMed Central

Vilain S., Pretorius J. M. Theron J. & Brözel V.S. 2009. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl. Environ. Microbiol. 75: 2861–2868.10.1128/AEM.01317-08Search in Google Scholar PubMed PubMed Central

Walker S.L., Hill J.E. Redman J.A. & Elimelech M. 2005. Influence of growth phase on adhesion kinetics of Escherichia coli D21g. Appl. Environ. Microbiol. 71: 3093–3099.10.1128/AEM.71.6.3093-3099.2005Search in Google Scholar PubMed PubMed Central

Wang J., Gao X., Wang Q., Sun H., Wang X. & Gao C. 2015. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid. Appl. Surface Sci. 356: 467–474.10.1016/j.apsusc.2015.08.095Search in Google Scholar

Wang J., Quan C., Wang X., Zhao P. & Fan S. 2011. Extraction, purification and identification of bacterial signal molecules based on N-acyl homoserine lactones. Microb. Biotechnol. 4: 479–490.10.1111/j.1751-7915.2010.00197.xSearch in Google Scholar PubMed PubMed Central

Weerasekara N.A., Choo K.H. & Lee C.H. 2014. Hybridization of physical cleaning and quorum quenching to minimize membrane biofouling and energy consumption in a membrane bioreactor. Water Res. 67: 1–10.10.1016/j.watres.2014.08.049Search in Google Scholar PubMed

Yuan Z.C., Edlind M.P., Liu P., Saenkham P., Banta L.M., Wise A.A., Ronzone E., Binns A.N., Kerr K. & Nester E.W. 2007. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc. Natl. Acad. Sci. USA 104: 11790–11795.10.1073/pnas.0704866104Search in Google Scholar PubMed PubMed Central


acyl homoserine lactone


N-hexanoyl-L-homoserine lactone




quantitative PCR


quorum quenching


quorum sensing


salicylic acid

Received: 2015-12-31
Accepted: 2016-3-18
Published Online: 2016-4-20
Published in Print: 2016-3-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Downloaded on 1.10.2023 from
Scroll to top button