Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2016

Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering

  • Franca N. Alaribe EMAIL logo , Sello L. Manoto and Shirley C.K.M. Motaung EMAIL logo
From the journal Biologia


Nowadays, there has been immense progress in developing materials to support transplanted cells. Nevertheless, the complexity of tissues is far beyond what is found in the most advanced scaffolds. This article reviews the types of biomaterials and their resulting scaffolds in the bio-engineering of bone and tissues by presenting an overview of the characteristics of ideal scaffold in tissue engineering along with types of scaffolds and examples of previous studies where these scaffolds have been applied. The advantages of scaffolds, and the three-dimensional culture system and its used commercially available scaffold is presented. Challenges encountered in the application of these scaffolds in bone and tissue engineering is also highlighted. Used method was by acquisition of materials through Google scholar, Science direct, PubMed and University library archives. Proper knowledge of the above highlighted facts will go a long way in re-addressing the production of scaffolds for bone and tissue engineering. With the proliferation of innovative applications in bioactive glasses and glass ceramics, the greater need for specific understanding of cell biology with emphasis on cellular differentiation, cell to cell interaction and extracellular matrix formation in engineering of bone and tissues becomes inevitable. This will enhance scaffold production, bone regeneration and transplantation outcome.


The authors would like to thank Tshwane University of Technology for their total support.


Adelöw C., Segura T., Hubbell J. & Frey P. 2008. The effect of enzymatically degradable poly (ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials 29: 314–326.10.1016/j.biomaterials.2007.09.036Search in Google Scholar PubMed

Agholme L., Lindstrom T., Kagedal K., Marcusson J. & Hallbeck M. 2010. An in vitro model for neuroscience: differentiation of SH-SY5Y cells in cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis. 20: 1069–1082.10.3233/JAD-2010-091363Search in Google Scholar PubMed

Ahmed T., Dare E. & Hincke M. 2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Rev. 14: 199– 215.10.1089/ten.teb.2007.0435Search in Google Scholar PubMed

Alvarez K., Hyun S.K., Nakano T., Umakoshi Y. & Nakajima H. 2009. In vivo osteocompatibility of Lotus-type porous nickelfree stainless steel in rats. Mater. Sci. Eng. 29: 1182–1190.10.1016/j.msec.2008.09.037Search in Google Scholar

Ando T., Yamazoe H., Moriyasu K., Ueda Y. & Iwata H. 2007. Induction of dopamine-releasing cells from primate embryonic stem cells enclosed in agarose microcapsules. Tissue Eng. 13: 2539–2547.10.1089/ten.2007.0045Search in Google Scholar PubMed

Arai K., Iwanaga S., Toda H., Genci C., Nishiyama Y. & Nakamura M. 2011. Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3: 034113.10.1088/1758-5082/3/3/034113Search in Google Scholar PubMed

Badylak S.F. 2004. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12: 367–377.10.1016/j.trim.2003.12.016Search in Google Scholar PubMed

Baino F. & Vitale-Brovarone C. 2011. Three-dimensional glassderived scaffolds for bone tissue engineering: current trends and forecasts for the future. J. Biomed. Mater. Res. 97: 514– 535.10.1002/jbm.a.33072Search in Google Scholar PubMed

Baino F. & Vitale-Brovarone C. 2014. Mechanical properties and reliability of glass-ceramic foam scaffolds for bone repair. Mater. Lett. 118: 27–30.10.1016/j.matlet.2013.12.037Search in Google Scholar

Baino F., Ferraris M., Bretcanu O., Verné E. & Vitale-Brovarone C. 2013. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. J Biomater. Appl. 27: 872–890.10.1177/0885328211429193Search in Google Scholar PubMed

Baino F., Marshall M., Kirk N & Vitale-Brovarone C. 2016. Design, selection and characterization of novel glasses and glassceramics for use in prosthetic applications. Ceram. Int. 42: 1482–1491.10.1016/j.ceramint.2015.09.094Search in Google Scholar

Baino F., Novajra G. & Vitale-Brovarone C. 2015. Bioceramics and scaffolds: a winning combination for tissue engineering. Front. Bioeng. Biotechnol. 3: 202.10.3389/fbioe.2015.00202Search in Google Scholar

Baino F., Verné E. & Vitale-Brovarone C. 2009. 3-D high strength glass-ceramic scaffolds containing fluoroapatite for load-bearing bone portions replace-ment. Mater. Sci. Eng. 29: 2055–2062.10.1016/j.msec.2009.04.002Search in Google Scholar

Becerra J., Andrades J.A., Guerado E., Zamora-Navas P., López-Puertas J.M. & Reddi AH. 2010. Articular cartilage: structure and regeneration. Tissue Eng. Part B Rev. 16: 617.10.1089/ten.teb.2010.0191Search in Google Scholar

Berkland C., King M., Cox A., Kim K. & Pack D.W. 2002. Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Cont. Rel. 82: 137–147.10.1016/S0168-3659(02)00136-0Search in Google Scholar

Bhattarai S.R., Bhattarai N., Yi H.K., Hwang P.H., Cha D.I. & Kim H.Y. 2006. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25: 2595–2602.10.1016/j.biomaterials.2003.09.043Search in Google Scholar PubMed

Chen J., Xu J., Wang A. & Zheng M. 2009. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev. Med. Devices 6: 61–73.10.1586/17434440.6.1.61Search in Google Scholar PubMed

Chen Q., Baino F., Spriano S., Pungno N.M. & Vitale-Brovarone C. 2014. Modelling of strength-porosity relationship in glassceramic foam scaffolds for bone repair. J. Eur. Ceram. Soc. 34: 2663–2673.10.1016/j.jeurceramsoc.2013.11.041Search in Google Scholar

Chen Q. & Huang S. 2013. Mechanical properties of a porous bio-scaffold with hierarchy. Mater Lett. 95: 89–92.10.1016/j.matlet.2012.12.071Search in Google Scholar

Chiu Y., Larson J., Isom A. & Brey E. 2010. Generation of porous poly (ethylene glycol) hydrogels by salt leaching. Tissue Eng. Part C Methods 16: 905–912.10.1089/ten.tec.2009.0646Search in Google Scholar PubMed

Chung K., Mishra N., Wang C., Lin F. & Lin K. 2009. Fabricating scaffolds by microfluidics. Biomicrofluidics 3: 22403.10.1063/1.3122665Search in Google Scholar PubMed PubMed Central

Dhaliwal A. 2012. A comprehensive review of methods for 3D cell culture. Mater Methods 2: 162.10.13070/mm.en.2.162Search in Google Scholar

Discher D.E., Mooney D.J. & Zandstra P.W. 2009. Growth factors, matrices, and forces combine and control stem cells. Science 324: 1673–1677.10.1126/science.1171643Search in Google Scholar PubMed PubMed Central

Dmitriev R.I., Borisov S.M., Kondrashina A.V., Pakan J.M.P., Anilkumar U., Prehn J.H.M., Zhdanov A.V., McDermott K.W., Klimant I., Papkovsky D.B. 2015. Imaging oxygen in neural cell and tissue models by means of anionic cell permeable phosphorescent nanoparticles. Cell. Mol. Life Sci. 72: 367–381.10.1007/s00018-014-1673-5Search in Google Scholar PubMed

Dolega M.E., Abeille F., Picollet-D’hahan N. & Gidrol X. 2015. Controlled 3D culture in Matrigel microbeads to analyse clonal acinar. Biomaterials 52: 347–357.10.1016/j.biomaterials.2015.02.042Search in Google Scholar PubMed

Engler A.J., Sen S., Sweeney H.L. & Discher D.E. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689.10.1016/j.cell.2006.06.044Search in Google Scholar PubMed

Erol-Taygun M., Zheng K. & Boccaccini A.R. 2013. Nanoscale bioactive glasses in medical applications. Int. J. Appl. Glass Sci. 4: 136–148.10.1111/ijag.12029Search in Google Scholar

Fernandes H., Mentink A., Bank R., Stoop R., van Blitterwijk C. & de Boer J. 2010. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells. Tissue Eng. 16: 1693–1702.10.1089/ten.tea.2009.0341Search in Google Scholar

Fielding G.A., Bandyopadhyay A. & Bose S. 2012. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28: 113–122.10.1016/ in Google Scholar PubMed PubMed Central

Finger A.R., Sargent C.Y., Dulaney K.O., Bernacki S.H. & Loboa E.G. 2007. Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng. 13: 1151–1158.10.1089/ten.2006.0290Search in Google Scholar PubMed

Fiorilli S., Baino F., Cauda V., Crepald M. & Vitale-Brovarone C. 2015. Electrophoretic deposition of mesoporous bioactive glass-ceramic foam scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 26: 21.10.1007/s10856-014-5346-6Search in Google Scholar PubMed

Fischer S.N., Johnson J.K., Baran C.P., Newland C.A., Marsh C.B. & Lannutti J.J. 2011. Organ-derived coatings on electrospun nanofibers as ex vivo microenvironments. Biomaterials 32: 538–546.10.1016/j.biomaterials.2010.08.104Search in Google Scholar PubMed PubMed Central

Fu Q., Saiz E., Rahaman M.N. & Tomsia A.P. 2011. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater. Sci. Eng. 31: 1245–1256.10.1016/j.msec.2011.04.022Search in Google Scholar PubMed PubMed Central

Fuchs S., Jiang X., Schmidt H., Dohle E., Ghanaati S. & Orth C. 2009. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 30: 1329–1338.10.1016/j.biomaterials.2008.11.028Search in Google Scholar PubMed

Gao C., Deng Y., Feng P., Mao Z., Li P. & Yang B. 2014. Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int. J. Mol. Sci. 15: 4714–4732.10.3390/ijms15034714Search in Google Scholar PubMed PubMed Central

Garcia A., Izquierdo-Barba I., Colilla M., Laorden C. & Vallet-Regi M. 2013 Preperation of 3-D scaffolds in the SiO2-P2O5 system with tailored hierarchical mesomacroporosity. Acta Biomater. 7: 1265–1273.10.1016/j.actbio.2010.10.006Search in Google Scholar PubMed

Ge Z., Jin Z. & Cao T. 2008. Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed. Mater. 3: 022001.10.1088/1748-6041/3/2/022001Search in Google Scholar PubMed

Gerhardt L.C. & Boccaccini A.R. 2010. Bioactive glass and glassceramic scaffolds for bone tissue engineering. Materials 3: 3867–3910.10.3390/ma3073867Search in Google Scholar PubMed PubMed Central

Guggisberg S., Benneker L.M., Keel M.J. & Gantenbein B. 2015. Mechanical loading promoted discogenic differentiation of human mesenchymal stem cells incorporated in 3D PEG scaffolds with rhGDF5 and RGD. Int. J. Stem Cell Res. Ther. 2: 1.10.23937/2469-570X/1410006Search in Google Scholar

Hadjipanayi E., Mudera V. & Brown R. 2009. Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell. Motil. Cytoskeleton 66: 121–128.10.1002/cm.20331Search in Google Scholar PubMed

He L., Liu B., Xipeng G., Xie G., Liao S., Quan D., Cai D., Lu J. & Ramakrishna S. 2009. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. Eur. Cell. Mater. 18: 63–74.10.22203/eCM.v018a06Search in Google Scholar PubMed

Hofmann S., Hagenmuller H., Koch A.M., Muller R., Vunjak-Novakovic G., Kaplan D.L., Merkle H.P. & Meinel L. 2007. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28: 1152–1162.10.1016/j.biomaterials.2006.10.019Search in Google Scholar PubMed

Huang Y., Ren J., Chen C., Ren T. & Zhou X. 2008. Preparation and properties of poly (lactide-co-glycolide)(PLGA)/nanohydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J. Biomater. Appl. 22: 409–432.10.1177/0885328207077632Search in Google Scholar PubMed

Hutmacher D.W. 2001. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspective. J. Biomater. Sci. 12: 107–124.10.1163/156856201744489Search in Google Scholar PubMed

Jacobs J.J., Skipor A.K., Patterson L.M., Hallab N.J., Paprosky W.G., Black J. & Galante J.O. 1998. Metal release in patients who have had a primary total hip arthroplasty. J. Bone Joint Surg. Am. 80: 1447–1458.10.2106/00004623-199810000-00006Search in Google Scholar PubMed

Jaklenec A., Hinckfuss A., Bilgen B., Ciombor D.M., Aaron R. & Mathiowitz E. 2008. Sequential release of bioactive IGF-I and TGF-β1 from PLGA microsphere-based scaffolds. Biomaterials 29: 1518–1525.10.1016/j.biomaterials.2007.12.004Search in Google Scholar PubMed

Kaihara S., Matsumura S. & Fisher J.P. 2008. Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur. J. Pharm. Biopharm 68: 67–73.10.1016/j.ejpb.2007.05.019Search in Google Scholar PubMed

Kang S. & Bae Y. 2009. Cryopreservable and tumorigenic threedimensional tumor culture in porous poly (lactic-co-glycolic acid) microsphere. Biomaterials 30: 4227–4232.10.1016/j.biomaterials.2009.04.025Search in Google Scholar PubMed PubMed Central

Keshaw H., Georgiou G., Blaker J.J., Forbes A. & Knowles J.C. 2009. Assessment of polymer/bioactive glass-composite microporous spheres for tissue regeneration applications. Tissue Eng. 15: 1451–1461.10.1089/ten.tea.2008.0203Search in Google Scholar PubMed

Kim S.S., Park M.S., Jeon O., Choi C.Y. & Kim B.S. 2006. Poly (lactide-co-lycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27: 1399–1409.10.1016/j.biomaterials.2005.08.016Search in Google Scholar PubMed

Kohlhauser C., Hellmich C., Vitale-Brovarone C., Boccaccini AR., Rota A. & Eberhardsteiner J. 2009. Ultrasonic characterisation of porous biomaterials across different frequencies. Strain 45: 34–44.10.1111/j.1475-1305.2008.00417.xSearch in Google Scholar

Kopp A., Strobel S., Tortajada A., De Cordoba S.R., Sanchez-Corral P., Prohaszka Z., Lopez-Trascasa M. & Jozsi M. 2012. A typical hemolytic uremic syndrome associated variants and auto-antibodies impair binding of factor H and factor H related protein 1 to pentraxin 3. J. Immunol. 189: 1858–1867.10.4049/jimmunol.1200357Search in Google Scholar

Lacroix D., Chateau A., Ginebra M.P. & Planell J. A. 2006. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27: 5326–5334.10.1016/j.biomaterials.2006.06.009Search in Google Scholar

Leigh S., Gilbert H., Barker I., Becker J., Richardson S., Hoyland J., Covington J. & Dove A. 2013. Fabrication of 3-dimensional cellular constructs via microstereolithography using a simple, three-component, poly (ethylene glycol) acrylate-based system. Biomacromolecules 14: 186–192.10.1021/bm3015736Search in Google Scholar

Liu C., Xia Z. & Czernuszka J.T. 2007. Design and development of three-dimensional scaffolds for tissue engineering. Chem. Eng. Res. Des. 85: 1051–1064.10.1205/cherd06196Search in Google Scholar

Loh Q.L. & Choong C. 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. 19: 485–502.10.1089/ten.teb.2012.0437Search in Google Scholar

Ma P.X. 2006. Scaffolds for tissue fabrication. Mater. Today 7: 30–40.10.1016/S1369-7021(04)00233-0Search in Google Scholar

Ma P.X. & Zhang R. 2001. Microtubular architecture of biodegradable polymer scaffolds. J. Biomed. Mater. Res. 56: 469–477.10.1002/1097-4636(20010915)56:4<469::AID-JBM1118>3.0.CO;2-HSearch in Google Scholar

Malafaya P.B., Pedro A.J., Peterbauer A., Gabrie C., Redl H. & Reis R.L. 2005. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J. Mater. Sci. 16: 1077–1085.10.1007/s10856-005-4709-4Search in Google Scholar

Malafaya P.B., Silva G.A. & Reis R.L. 2007. Natural origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering application. Adv. Drug Deliv. Rev. 59: 207–233.10.1016/j.addr.2007.03.012Search in Google Scholar

Manoto S.L., Houreld N.N. & Abrahamse H. 2015. Resistance of lung cancer cells grown as multicellular tumour spheroids to zinc sulfophthalocyanine photosensitization. Int. J. Mol. Sci. 16: 10185–10200.10.3390/ijms160510185Search in Google Scholar

Mathes S.H., Wohlwend L., Uebersax L., Von Mentlen R., Thoma D.S. & Jung R.E. 2010. A bioreactor test system to mimic the biological and mechanical environment or oral soft tissues and to evaluate substitutes for connective tissue grafts. Biotechnol. Bioeng. 107: 1029–1039.10.1002/bit.22893Search in Google Scholar

Miguez-Pacheco V., Greenspan D., Hench L. L. & Boccaccini A. R. 2015. Bioactive glasses in soft tissue repair. Am. Ceram. Soc. Bull. 94: 27–31.Search in Google Scholar

Miguez-Pacheco V, Hench L.L. & Boccaccini A.R. 2015. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 13: 1–15.10.1016/j.actbio.2014.11.004Search in Google Scholar

Motaung C.K.M., Cesare P.E. & Reddi H. 2011. Differential response of cartilage oligomeric matrix protein (COMP) to morphogens of bone morphogenetic protein/transforming growth factor-β family in the surface, middle and deep zones of articular cartilage. J. Tissue Eng. Regen. Med. 5: 87–96.10.1002/term.358Search in Google Scholar

Natesan S., Baer D., Walters T., Babu M. & Christy R. 2010. Adipose-derived stem cell delivery into collagen gels using chitosan microspheres. Tissue Eng. 16: 1369–1384.10.1089/ten.tea.2009.0404Search in Google Scholar

Nicholas J.E., Niles J., Riddle M., Vegas G., Schilagard T., Ma L., Edward K., La Francesca S., Sakamoto J., Vega S., Ogadegbe M., Mlcak R., Deyo D., Woodson L., McQuitty C., Lick S., Beckles D., Melo E. & Cortiella J. 2013. Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng. 19: 2045–2062.10.1089/ten.tea.2012.0250Search in Google Scholar

Nugraha B., Hong X., Mo X., Tan L., Zhang W., Chan P.M. Kang C.H., Wang Y., Beng L.T., Sun W., Choudhury D., Robens J.M., McMillian M., Silva J., Dallas S., Tan C.H., Yue Z., Yu H. 2011. Galactosylated cellulosic sponge for multi well drug safety testing. Biomaterials. 32: 6982–6994.10.1016/j.biomaterials.2011.05.087Search in Google Scholar

O’Brien F.J. 2011. Biomaterials and scaffolds for tissue engineering. Mater. Today 14: 88–95.10.1016/S1369-7021(11)70058-XSearch in Google Scholar

Raghunath J., Rollo J., Sales K.M., Butler P.E. & Seifalian A.M. 2007. Biomaterials and scaffold design: key to tissueengineering cartilage. Biotechnol. Appl. Biochem. 46: 73–84.10.1042/BA20060134Search in Google Scholar PubMed

Renghini C., Giuliani A., Mazzoni S., Brun F., Larsson E., Baino F., Vitale-Brovarone C. 2013. Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation Xraymicrotomography. J. Eur. Ceram. Soc. 33: 1553–1565.10.1016/j.jeurceramsoc.2012.10.016Search in Google Scholar

Renghini C., Komlev V., Fiori F., Verné E., Baino F., Vitale-Brovarone C. 2009. Micro-CT studies on 3-D bioactive glassceramic scaffolds for bone regeneration. Acta Biomater. 5: 1328–1337.10.1016/j.actbio.2008.10.017Search in Google Scholar PubMed

Renier D., Bellato P., Bellini D., Pavesio A., Pressato D. & Borrione A. 2007. Pharmacokinetic behaviour of ACP gel, an autocrosslinked hyaluronan derivative, after intraperitoneal administration. Biomaterials 26: 5368–5374.10.1016/j.biomaterials.2005.01.053Search in Google Scholar PubMed

Rihmann M. & Graf-Hausner U. 2012. Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol. 23: 1–7.10.1016/j.copbio.2012.01.011Search in Google Scholar PubMed

Sabree I., Gough J.E. & Derby B. 2015. Mechanical properties of porous ceramic scaffolds: influence of internal dimensions. Ceram. Int. 41: 8425–8432.10.1016/j.ceramint.2015.03.044Search in Google Scholar

Salerno A., Guarnieri D., Iannone M., Zeppetelli S. & Netti P. 2010. Effect of micro- and macroporosity of bone tissue threedimensionalpoly (epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Tissue Eng. 16: 2661–2673.10.1089/ten.tea.2009.0494Search in Google Scholar PubMed

Sanz-Herrera J.A., Garcia-Aznar J.M. & Doblaré M. 2008. A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomech. ModelMechanobiol. 7: 355–66.10.1007/s10237-007-0089-7Search in Google Scholar PubMed

Saw K.Y., Anz A., Siew-Yoke J.C., Mericans S., Ching-Song R., Roohi S.A. & Ragavanaidu K. 2013. Articular Cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy 29: 684–694.10.1016/j.arthro.2012.12.008Search in Google Scholar PubMed

Scheiner S., Sinibaldi R., Pichler B., Komlev V., Renghini C., Vitale-Brovarone C., Rustichelli F. & Hellmich C. 2009. Micromechanics of bone tissue-engineering scaffolds based on resolution error-cleared computer tomography. Biomaterials 30: 2411–2419.10.1016/j.biomaterials.2008.12.048Search in Google Scholar PubMed

Sieminski A.L., Semino C.E., Gong H. & Kamm R.D. 2008. Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J. Biomed. Mater. Res. A 87: 494–504.10.1002/jbm.a.31785Search in Google Scholar PubMed

Sierad L., Simionescu A., Albers C., Chen J., Maivelett J., Tedder M., Liao J. & Simionescu D.T. 2010. Design and testing of a pulsatile conditioning system for dynamic endothelialization of polyphenol-stabilized tissue engineered heart valves. Cardiovasc. Eng. Technol. 1: 138–153.10.1007/s13239-010-0014-6Search in Google Scholar PubMed PubMed Central

Smith S.J., Wilson M., Ward J.H., Rahman C.V., Peet A.C., Macarthur D.C., Rose F.R., Grundy R.G. & Rahman R. 2012. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition. PLoS One 7: e52335.10.1371/journal.pone.0052335Search in Google Scholar PubMed PubMed Central

Souza G., Molina J., Raphael R., Ozawa M., Stark D., Levin C., Bronk L.F., Ananta J.S., Mandelin J. & Georgescu M.M. 2010. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5: 291–296.10.1038/nnano.2010.23Search in Google Scholar PubMed PubMed Central

Tancret F., Bouler J.M., Chamousset J. & Minois L.M. 2006. Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 26: 3647–3656.10.1016/j.jeurceramsoc.2005.12.015Search in Google Scholar

Thein-Han W.W. & Misra R.D.K. 2009. Biomimetic chitosannanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 5: 1182–1197.10.1016/j.actbio.2008.11.025Search in Google Scholar PubMed

Tran R., Naseri E., Kolasnikov A., Bai X. & Yang J. 2011. A new generation of sodium chloride porogen for tissue engineering. Biotechnol. Appl. Biochem. 58: 335–344.10.1002/bab.44Search in Google Scholar PubMed

Uematsu K., Hattori K., Ishimoto Y., Yamauchi J., Habata T., Takakura Y., Ohgushi H., Fukuchi T. & Sato M. 2005. Cartilage regeneration using mesenchymal stem cells and a threedimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26: 4273–4279.10.1016/j.biomaterials.2004.10.037Search in Google Scholar PubMed

Vitale-Brovarone C., Baino F., Tallia F., Gervasio C. & Verné E. 2012. Bioactive glass-derived trabecular coating: a smart solution for enhancing oste-ointegration of prosthetic elements. J. Mater. Sci. Mater. Med. 23: 2369–2380.10.1007/s10856-012-4643-1Search in Google Scholar PubMed

Vitale-Brovarone C., Baino F. & Verné E. 2009. High strength bioactive glass-ceramic scaffolds for bone regeneration. J. Mater. Sci. Mater. Med. 20: 643–53.10.1007/s10856-008-3605-0Search in Google Scholar PubMed

Vitale-Brovarone C., Verné E., Robiglio L., Appendino P., Bassi F. & Martinasso G., Muzio G. & Canuto R. 2007. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater. 3: 199–208.10.1016/j.actbio.2006.07.012Search in Google Scholar PubMed

Wang H., Mullins M., Cregg J., McCarthy C. & Gilbert R. 2010. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 6: 2970–2978.10.1016/j.actbio.2010.02.020Search in Google Scholar PubMed

Wang Y., Kim U.J., Blasioli D.J., Kim H.J. & Kaplan D.L. 2005. In vitro cartilage tissue engineering with 3D porous aqueousderived silk scaffolds and mesenchymal stem cells. Biomaterials 26: 7082–7094.10.1016/j.biomaterials.2005.05.022Search in Google Scholar PubMed

Watanabe K., Nakamura Okano H. & Toyama Y. 2007. Establishment of three-dimensional culture of neural stem/progenitor cells in collagen Type-1 Gel. Restor. Neurol. Neurosci. 25: 109–117.Search in Google Scholar

Wu S., Liu Y., Bharadwaj S., Atala A. & Zhang Y. 2011a. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials 32: 1317–1326.10.1016/j.biomaterials.2010.10.006Search in Google Scholar PubMed

Wu C., Luo Y., Cuniberti G., Xiao Y. & Gelinsky M. 2011b. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization. Acta Biomater. 7: 2644–2650.10.1016/j.actbio.2011.03.009Search in Google Scholar PubMed

Wu C., Zhang Y., Zhu Y., Friis T. & Xiao Y. 2010. Structureproperty relationships of silk modified mesoporous bioglass scaffolds. Biomaterials 31: 3429–3438.10.1016/j.biomaterials.2010.01.061Search in Google Scholar PubMed

Yan X., Yu C., Zhou X., Tang J. & Zhao D. 2004. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. Engl. 43: 5980–5984.10.1002/anie.200460598Search in Google Scholar PubMed

Yeong W., Sudarmadji N., Yu H., Chua C., Leong K., Venkatraman S., Boey Y. & Tan L. 2010. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 6: 2028–2034.10.1016/j.actbio.2009.12.033Search in Google Scholar PubMed

Zhao J., Han W., Chen H., Tu M., Huan S., Miao G. Zeng R, Wu H, Cha Z. & Zhou C. 2011. Fabrication and in vivo osteogenesis of biomimetic poly (propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering. J. Mater. Sci. Mater. Med. 23: 517–525.10.1007/s10856-011-4468-3Search in Google Scholar PubMed

Zhu X., Lee L., Jackson J., Tong Y. & Wang C. 2008. Characterization of porous poly (D, L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Biotechnol. Bioeng. 100: 998–1009.10.1002/bit.21824Search in Google Scholar PubMed




American Society for Testing Material


bioactive glass


computer-aided design


extracellular matrix








human hepatoma 3B cells


micron-sized bioactive glass


mesoporous bioactive glass


mesenchymal stem cells


nano-sized bioactive glass


oligo-poly glycol-fumarate


polybutylene terephthalate






polyethylene glycol




poly-lactic acids


poly-lactic-co-glycolic acid


poly-L-lactic acid


polypropylene carbonate


polyvinyl alcohol


small intestinal sub-mucosa


tricalcium phosphate


transforming growth factor beta 1


vascular endothelial growth factor

Received: 2015-12-1
Accepted: 2016-1-1
Published Online: 2016-5-15
Published in Print: 2016-5-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Downloaded on 7.6.2023 from
Scroll to top button