Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2016

Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase

Kizhakkepowathial Nair Unni , Prakasan Priji , Sreedharan Sajith , Panichikkal Abdul Faisal and Sailas Benjamin EMAIL logo
From the journal Biologia


Pseudomonas aeruginosa strain BUP2 (MTCC No. 5924), a novel bacterium isolated from the rumen of the Malabari goat was explored in this study for its efficiency in the production of lipase in Benjamin Unni Priji medium supplemented with 1% groundnut oil. Plackett-Burman and Box-Behnken designs were applied for optimizing the culture parameters statistically for the enhanced production of lipase; and temperature (28°C), pH (6) and incubation time (24 h) were found as significant factors for increasing the production of lipase by 11% (from 152 to 171 U/mL). Using (NH4)2SO4 fractionation and Sephadex G-100 gel filtration techniques, the lipase was purified to homogeneity (36 folds with 20% yield) with 2,392 U/mg specific activity; its apparent MW was 29 kDa, as judged by SDS-PAGE. The maximum activity (2,802 U/mL and 177% specific activity) of the purified lipase was observed with 50 mM para-nitrophenyl palmitate as substrate (at pH 8, 45°C temperature, 5.0 mM Ca2+ and 0.5% Triton X-100, after 30 min of incubation). The Km and Vmax values of the purified lipase were found as 4.75 mM and 999 μmol/min/mg, respectively; and that this may be the first report on a lipase produced by a microorganism inhabiting the rumen of a goat. Briefly, the alkalophilic and thermotolerant lipase produced by P. aeruginosa strain BUP2 with higher specific activity would find better utility in detergency; moreover, this low MW protein is a good candidate for genetic engineering toward catalytic resolution of fine chemicals.


A research grant (Order No. 1417/2014/KSCSTE) from Kerala State Council for Science, Technology & Environment, Government of Kerala, is gratefully acknowledged. The authors also declare that there exist no competing interests.


Abdel-Fattah Y.R., Saeed H.M., Gohar Y.M. & El-Baz M.A. 2005. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem. 40: 1707–1714.10.1016/j.procbio.2004.06.048Search in Google Scholar

Anbu P. 2014. Characterization of an extracellular lipase byPseudomonas koreensis BK-L07 isolated from soil. Prep. Biochem. Biotechnol. 44: 266–280.10.1080/10826068.2013.812564Search in Google Scholar

Benjamin S. & Pandey A. 1998. Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast 14: 1069– 1087.10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.0.CO;2-KSearch in Google Scholar

Bisht D., Yadav S.K. & Darmwal N.S. 2012. Enhanced production of extracellular alkaline lipase by an improved strain of Pseudomonas aeruginosa (MTCC 10055). Am. J. Appl. Sci. 9: 158–167.10.3844/ajassp.2012.158.167Search in Google Scholar

Borkar P.S., Bodade R.G., Rao S.R. & Khobragade C.N. 2009. Purification and characterization of extracellular lipase from anew strain: Pseudomonas aeruginosa SRT9. Braz. J. Microbiol. 40: 358–366.10.1590/S1517-83822009000200028Search in Google Scholar

Burkert J.F.M., Maugeri F. & Rodrigues M.I. 2004. Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour. Technol. 91: 77–84.10.1016/S0960-8524(03)00152-4Search in Google Scholar

Chakraborty K. & Paulraj R. 2009. Purification and biochemical characterization of an extracellular lipase from Pseudomonas fluorescens (MTCC 2421). J. Agric. Food. Chem. 57: 3859– 3866.10.1021/jf803797mSearch in Google Scholar

Chartrain M., Katz L., Marcin C., Thien M., Smith S., Fisher E., Goklen K., Salmon P., Brix T., Price K. & Greasham R. 1993. Purification and characterization of a novel bioconverting lipase from Pseudomonas aeruginosa MB 5001. Enzyme Microb. Technol. 15: 575–580.10.1016/0141-0229(93)90019-XSearch in Google Scholar

Dandavate V., Jinjala J., Keharia H. & Madamwar D. 2009. Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour. Technol. 100: 3374–3381.10.1016/j.biortech.2009.02.011Search in Google Scholar

Dharmsthiti S. & Luchai S. 1999. Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiol. Lett. 179: 241–246.10.1111/j.1574-6968.1999.tb08734.xSearch in Google Scholar

Fullbrook P.D. 1996. Practical applied kinetics. Ind. Enzymol. 2: 483–540.Search in Google Scholar

Gaur R. & Khare S.K. 2011. Statistical optimization of palm oil hydrolysis by Pseudomonas aeruginosa PseA lipase. Asia-Pac. J. Chem. Eng. 6: 147–153.10.1002/apj.510Search in Google Scholar

Gaur R., Gupta A. & Khare S.K. 2008. Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochem. 43: 1040–1046.10.1016/j.procbio.2008.05.007Search in Google Scholar

Gupta N., Rathi P. & Gupta R. 2002. Simplified para-nitrophenyl palmitate assay for lipase and esterases. Anal. Biochem. 311 : 98–99.10.1016/S0003-2697(02)00379-2Search in Google Scholar

Gupta R., Gupta N. & Rathi P. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763–781.10.1007/s00253-004-1568-8Search in Google Scholar

Haba E., Bresco O., Ferrer C., Marques A., Busquets M. & Manresa A. 2000. Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzyme Microb. Technol. 26: 40–44.10.1016/S0141-0229(99)00125-8Search in Google Scholar

Hasan-Beikdashti M., Forootanfar H., Safiarian M.S., Ameri A., Ghahremani M.H., Khoshayand M.R. & Faramarzi M.A. 2012. Optimization of culture conditions for production of lipase by a newly associated bacterium Stenotrophomonas maltophilia. J. Taiwan Inst. Chem. E 43: 670–677.10.1016/j.jtice.2012.03.005Search in Google Scholar

He Y. Q. & Tan T.W. 2006. Use of response surface methodology to optimize culture medium for lipase for production of lipase with Candida sp. 99-125. J. Mol. Catal. B Enzym. 43: 9–14.10.1016/j.molcatb.2006.02.018Search in Google Scholar

Jaeger K.E. & Eggert T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390–397.10.1016/S0958-1669(02)00341-5Search in Google Scholar

Karadzic I., Masui A., Zivkovic L.I. & Fujiwar N. 2006. Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J. Biosci. Bioeng. 102: 82–89.10.1263/jbb.102.82Search in Google Scholar PubMed

Kaushik R., Saran S., Isar J. & Saxena R.K. 2006. Optimization of lipase production from Aspergillus terreus by response surface methodology and its potential for synthesis of partial glycerides under solvent free conditions. J. Mol. Catal. B Enzym. 40: 121–126.10.1007/s12088-011-0100-ySearch in Google Scholar PubMed PubMed Central

Kojima Y. & Shimizu S. 2003. Purification and characterization of the lipase from Pseudomonas fluorescens HU380. J. Biosci. Bioeng. 96: 219–226.10.1016/S1389-1723(03)80185-8Search in Google Scholar

Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.10.1038/227680a0Search in Google Scholar

Lang D.A., Mannesse M.L., De Haas G.H., Verheij H.M. & Dijkstra B.W. 1998. Structural basis of the chiral selectivity of Pseudomonas cepacia lipase. Eur. J. Biochem. 254: 333–340.10.1046/j.1432-1327.1998.2540333.xSearch in Google Scholar

Liu C.H., Lu W.B. & Chang J.S. 2006. Optimizing lipase production of Burkholderia sp. by response surface methodology. Process Biochem. 41: 1940–1944.10.1016/j.jtice.2012.02.004Search in Google Scholar

Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.10.1016/S0021-9258(19)52451-6Search in Google Scholar

Mobarak-Qamsari E., Kasra-Kermanshahi R. & Moosavi-Nejad Z. 2011. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iran. J. Microbiol. 3: 92–98.Search in Google Scholar

Ogino H., Nakagawa S., Shinya K., Muto T., Fugimura N., Yasudo M., Yasuda M. & Ishikawa H. 2000. Purification and characterization of organic solvent tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 89: 451–457.10.1016/S1389-1723(00)89095-7Search in Google Scholar

Palekar A.A., Vasudevan P.T. & Yan S. 2000. Purification of lipase: a review. Biocatal. Biotransfor. 18: 177–200.10.3109/10242420009015244Search in Google Scholar

Pencreac’h G. & Baratti J. C. 1996. Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: a simple test for the determination of lipase activity in organic media. Enzyme Microb. Technol. 18: 417–422.10.1016/0141-0229(95)00120-4Search in Google Scholar

Peng R., Lin J. & Wei D. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2. Appl. Biochem. Microbiol. 162: 733–743.10.1007/s12010-009-8841-3Search in Google Scholar

Pleiss J., Fischer M., Schmid R.D. 1998. Anatomy of lipase binding site: the scissile fatty acid binding site. Chem. Phys. Lipids 93: 67–70.10.1016/S0009-3084(98)00030-9Search in Google Scholar

Priji P., Unni K.N., Sajith S., Binod P. & Benjamin S. 2015. Production, optimization, and partial purification of lipase from Pseudomonas sp. strain BUP6, a novel rumen bacterium characterized from Malabari goat. Biotechnol. Appl. Biochem. 62: 71–78.10.1002/bab.1237Search in Google Scholar PubMed

Rahman R.N.Z.R.A., Baharum S.N., Basri M. & Salleh A.B. 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal. Biochem. 341: 267–274.10.1016/j.ab.2005.03.006Search in Google Scholar PubMed

Reis P., Holmberg K., Watzke H., Leser M.E. & Miller R. 2009. Lipases at interfaces: a review. Adv. Colloid Interface Sci. 147: 237–250.10.1016/j.cis.2008.06.001Search in Google Scholar PubMed

Sim J.H. & Kamaruddin A.H. 2008. Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium – Clostridium aceticum using statistical approach. Bioresour. Technol. 99: 2724–2735.10.1016/j.biortech.2007.07.004Search in Google Scholar PubMed

Treichel H., de Oliveira D., Mazutti M.A., Di Luccio M. & Oliveira J.V. 2010. A review on microbial lipases production. Food Bioprocess Technol. 3: 182–196.10.1007/s11947-009-0202-2Search in Google Scholar

Unni K.N., Priji P., Geoffroy V.A., Doble M. & Benjamin S. 2014. Pseudomonas aeruginosa BUP2-A novel strain isolated from Malabari goat produces type 2 pyoverdine. Adv. Biosci. Biotechnol. 5: 874–885.10.4236/abb.2014.511102Search in Google Scholar


Benjamin Unni Priji


ethylenediaminetetraacetic acid




paranitrophenyl palmitate


response surface methodology


sodium dodecyl sulphate

Received: 2015-12-26
Accepted: 2016-4-14
Published Online: 2016-5-15
Published in Print: 2016-5-1

© Institute of Molecular Biology, Slovak Academy of Sciences

Downloaded on 2.12.2022 from
Scroll Up Arrow