Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 11, 2016

Climate warming and invasive fish species: Will they replace native fish species in waters of temperate zones?

Eva Záhorská
From the journal Biologia

Abstract

It is well accepted that climate change will have a significant effect on aquatic environments and together with temperature as one of the most important variables, it will represent a major driver of shift in the ecosystem. The increasing temperature in waters of temperate zones will have stressful effect on coldwater adapted fish species that may lead to the shrink of their area of occurrence or even to their extinction. The fish species able to replace the disappearing native populations would be the ones characterized with high plasticity of phenotypes, and strong biological flexibility, which manifest in quick change of life-history traits. Such species are likely to track the changes in their environment relatively rapidly, whereas the responses of majority native species are slower. The given overview on this topic will try to predict and describe global effect of climate change on ecosystems, impact of invasive species on native fish communities and their possible replacement in the future.

Acknowledgements

I would like to thank Jana Ciceková for her help during preparation process of the review. This study was funded by the Slovak Scientific Grant Agency (Project No. 1/0392/12).

References

Angilletta M.J. Jr., Wilson R.S., Navas C.A. & James R.S. 2003. Tradeoffs and evolution of thermal reaction norms. Trends Ecol. Evol. 18 (5): 234–240. 10.1016/S0169-5347(03)00087-9Search in Google Scholar

Atkinson D. 1994. Temperature and organism size – a biological law for ectotherms. Adv. Ecol. Res. 25: 1–58. 10.1016/S0065-2504(08)60212-3Search in Google Scholar

Benejam L., Alcaraz C., Sasal P., Simon-Levert G. & Garcia-Berthou E. 2009. Life history and parasites of invasive mosquitofish (Gambusia holbrooki) along a latitudinal gradient. Biol. Invasions 11 (10): 2265–2277. 10.1007/s10530-008-9413-0Search in Google Scholar

Bergstrom M.A. & Mensinger A.F. 2009. Interspecific Resource competition between the invasive round goby and three native species: logperch, slimy sculpin, and spoonhead sculpin. Trans. Am. Fish. Soc. 138 (5): 1009–1017. 10.1577/T08-095.1Search in Google Scholar

Bhagat Y., Fox M.G. & Ferreira M.T. 2006. Morphological differentiation in introduced pumpkinseed Lepomis gibbosus (L.) occupying different habitat zones in Portuguese reservoirs. J. Fish Biol. 69 (suppl. sc): 79–94. 10.1111/j.1095-8649.2006.01267.xSearch in Google Scholar

Blanchet S., Grenouillet G., Beauchard O., Tedesco P.A., Leprieur F., Dürr H.H., Busson F., Oberdorff T. & Brosse S. 2010. Non-native species disrupt the worldwide patterns of freshwater fish body size: implications for Bergmann’s rule. Ecol. Lett. 13 (4): 421–431. 10.1111/j.1461-0248.2009.01432.xSearch in Google Scholar PubMed

Brandner J., Auerswald K., Cerwenka A.F., Schliewen U.K. & Geist J. 2013. Comparative feeding ecology of invasive Ponto-Caspian gobies. Hydrobiologia 703 (1): 113–131. 10.1007/s10750-012-1349-9Search in Google Scholar

Buisson L. & Grenouillet G. 2009. Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Divers. Distrib. 15 (4): 613–626. 10.1111/j.1472-4642.2009.00565.xSearch in Google Scholar

Buisson L., Thuiller W., Lek S., Lim P. & Grenouillet G. 2008. Climate change hastens the turnover of stream fish assemblages. Global Change Biol. 14 (10): 2232–2248. 10.1111/j.1365-2486.2008.01657.xSearch in Google Scholar

Casselman J.M. 2002. Effects of temperature, global extremes, and climate change on year-class production of warmwater, coolwater and coldwater fishes in the Great Lakes basin, pp. 39–60. In: McGinn N.A. (ed.), Fisheries in a Changing Climate: Proceedings of the Sea Grant Symposium Fisheries in a Changing Climate, Phoenix, Arizona, USA, American Fisheries Society Symposium Series 32, 296 pp. ISBN: 1888569409Search in Google Scholar

Comte L. & Grenouillet G. 2013. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36 (11): 1236–1246. 10.1111/j.1600-0587.2013.00282.xSearch in Google Scholar

Copp G.H. & Fox M.G. 2007. Chapter 15. Growth and life history traits of introduced pumpkinseed (Lepomis gibbosus) in Europe, and the relevance to invasiveness potential, pp. 289–306. 10.1007/978-1-4020-6029-8_15. In: Gherardi F. (ed.), Biological Invaders in Inland Waters: Profiles, Distribution, and Threats, Vol. 2, Invading Nature – Springer Series, In Invasion Ecology, Springer, Berlin, 733 pp. ISBN: 978-1-4020-6028-1Search in Google Scholar

Copp G.H., Fox M.J. & Kovác V. 2002. Growth, morphology and life history traits of a cool-water European population of pumpkinseed Lepomis gibbosus. Arch. Hydrobiol. 155 (4): 585–614. 10.1127/archiv-hydrobiol/155/2002/585Search in Google Scholar

Coutant C.C. 1990. Temperature-oxygen habitat for freshwater and costal striped bass in a changing climate. T. Am. Fish. Soc. 119 (2): 240–253. 10.1577/1548-8659(1990)119<0240:THFFAC>2.3.CO;2Search in Google Scholar

Cucherousset J., Copp G.H., Fox M.G., Sterud E., van Kleef H.H., Verreycken H. & Záhorská E. 2009. Life-history traits and potential invasiveness of introduced pumpkinseed Lepomis gibbosus populations in northwestern Europe. Biol. Invasions 11: 2171–2180. 10.1007/s10530-009-9493-5Search in Google Scholar

Daufresne M. & Boët P. 2007. Climate change impacts on structure and diversity of fish communities in rivers. Glob. Change Biol. 13 (12): 2467–2478. 10.1111/j.1365-2486.2007.01449.xSearch in Google Scholar

Daufresne M., Lengfellner K. & Sommer U. 2009. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106 (31): 12788–12793. 10.1073/pnas.0902080106Search in Google Scholar

Daufresne M., Roger M.C., Capra H. & Lamouroux N. 2003. Long-term changes within the invertebrate and fish communities of Upper Rhône River: effects of climate factors. Glob. Change Biol. 10 (1): 124–140. 10.1046/j.1529-8817.2003.00720.xSearch in Google Scholar

Dembski S., Masson G., Monnier D., Wagner P. & Pihan J.C. 2006. Consequences of elevated water temperatures on life-history traits of an introduced fish, pumpkinseed Lepomis gibbosus. J. Fish. Biol. 69 (2): 331–346. 10.1111/j.1095-8649.2006.01087.xSearch in Google Scholar

Donelson J.M., Munday P.L., McCormick M.I., Pankhurst N.W. & Pankhurst P.M. 2010. Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Mar. Ecol. Prog. Ser. 401: 233–243. 10.3354/meps08366Search in Google Scholar

EA (Environmental Agency) 2009. Water for life and livelihoods. River Basin Management Plan, Thames River Basin District, Annex H Adapting to climate change. Environmental Agency, Rotherham, 35 pp.Search in Google Scholar

Eaton J.G. & Scheller R.M. 1996. Effects of climate warming on fish thermal habitat in streams of the United States. Limnol. Oceanogr. 41 (5): 1109–1115. 10.4319/lo.1996.41.5.1109Search in Google Scholar

Ercan D., Andreou D., Sana S., Öntaş C., Baba E., Top N., Karakuş U., Tarkan A.S. & Gozlan R.E. 2015. Evidence of threat to European economy and biodiversity following the introduction of an alien pathogen on the fungal-animal boundary. Emerg. Microbes Infect. 4: e52. 10.1038/emi.2015.52Search in Google Scholar PubMed PubMed Central

Fernández-Delgado C. & Rossomanno S. 1997. Reproductive biology of the mosquitofish in a permanent natural lagoon in south-west Spain: two tactics for one species. J. Fish. Biol. 51 (1): 80–92. 10.1111/j.1095-8649.1997.tb02515.xSearch in Google Scholar PubMed

Fox M.G. 1994. Growth, density, and interspecific influences on pumpkinseed sunfish life histories. Ecology 75 (4): 1157–1171. 10.2307/1939439Search in Google Scholar

Fox M.G. & Crivelli A.J. 1998. Body size and reproduction allocation in a multiple spawning cetrarchid. Can. J. Fish. Aquat. Sci. 55 (3): 737–748. 10.1139/cjfas-55-3-737Search in Google Scholar

Fox M.G. & Crivelli A.J. 2001. Life history traits of pumpkinseed (Lepomis gibbosus) populations introduced into warm thermal environments. Arch. Hydrobiol. 150 (4): 561–580. 10.1127/archiv-hydrobiol/150/2001/561Search in Google Scholar

Gardner J.L., Peters A., Kearney M.R., Joseph L. & Heinsohn R. 2011. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26 (6): 285–291. 10.1016/j.tree.2011.03.005Search in Google Scholar PubMed

Geist V. 1978. How genes communicate with the environment – the biology of inequality, Chapter 6, pp. 116–144. In: Geist V. (ed.), Life Strategies, Human Evolution, Environmental Design. Toward a Biological Theory of Health, Springer Verlag, Berlin, 495 pp. ISBN: 978-1-4612-6325-810.1007/978-1-4612-6325-8Search in Google Scholar

Gillespie G.J. & Fox M.G. 2003. Morphological and life-history differentiation between littoral and pelagic forms of pumpkinseed. J. Fish Biol. 62 (5): 1099–1115. 10.1046/j.1095-8649.2003.00100.xSearch in Google Scholar

Godinho F.N., Ferreira M.T. & Cortes R.V. 1997. The environmental basis of diet variation in pumpkinseed sunfish, Lepomis gibbosus, and largemouth bass, Micropterus salmoides, along an Iberian river basin. Environ. Biol. Fish. 50 (1): 105–115. 10.1023/A:1007302718072Search in Google Scholar

Gozlan R.E., Andreou D., Asaeda T., Beyer K., Bouhadad R., Burnard D., Caiola N., Cakic P., Djikanovic V., Esmaeili H.R., Falka I., Golicher D., Harka A., Jeney G., Kovác V., Musil J., Nocita A., Povz M., Poulet N., Virbickas T., Wolter C., Tarkan S.A., Tricarico E., Trichkova T., Verreycken H., Witkowski A., Zhang C.G., Zweimueller I. & Britton R.J. 2010. Pan-continental invasion of Pseudorasbora parva: towards a better understanding of freshwater fish invasion. Fish and Fisheries 11 (4): 315–340. 10.1111/j.1467-2979.2010.00361.xSearch in Google Scholar

Gozlan R.E., St-Hilaire S., Feist S.W., Martin P. & Kent M.L. 2005. Biodiversity: Disease threats on European fish. Nature 435 (7045): 1045–1046. 10.1038/4351046aSearch in Google Scholar

Grabowska J. & Przybylski M. 2014. Life-history traits of nonnative freshwater fish invaders differentiate them from natives in Central European bioregion. Rev. Fish. Biol. Fish. 25: 165–178. 10.1007/s11160-014-9375-5Search in Google Scholar

Hiddink J.G. & Ter Hofstede R. 2008. Climate induced increases in species richness of marine fishes. Glob. Change Biol. 14 (3): 453–460. 10.1111/j.1365-2486.2007.01518.xSearch in Google Scholar

Hill D.K. & Magnuson J.J. 1990. Potential effects of global climate warming on the growth and prey consumption of Great-Lakes fish. T. Am. Fish. Soc. 119 (2): 265–275. 10.1577/1548-8659(1990)119<0265:PEOGCW>2.3.CO;2Search in Google Scholar

Hôrková K. & Kovác V. 2014. Different life-histories of native and invasive Neogobius melanostomus and the possible role of phenotypic plasticity in the species’ invasion success. Knowl. Managt. Aquat. Ecosyst. 412: art. no.01. DOI:10.1051/kmae/2013081Search in Google Scholar

Jackson D.A. & Mandrak N.E. 2002. Changing fish biodiversity: predicting the loss of cyprinid biodiversity due to global climate change, pp. 89–98. In: McGinn N.A. (ed.), Fisheries in a Changing Climate: Proceedings of the Sea Grant Symposium Fisheries in a Changing Climate, Phoenix, Arizona, USA, American Fisheries Society Symposium Series 32, 296 pp. ISBN: 1888569409Search in Google Scholar

Janssen J. & Jude D.J. 2001. Recruitment failure of mottled sculpin Cottus bairdi in Calumet Harbor, southern Lake Michigan, induced by the newly introduced round goby Neogobius melanostomus. J. Great Lakes Res. 27 (3): 319–328. 10.1016/S0380-1330(01)70647-8Search in Google Scholar

Jelić D., Špelić I. & Žutinić P. 2016. Introduced species community over-dominates endemic ichthyofauna of high Lika Plateau (Central Croatia) over a 100 year period. Acta. Zool. Acad. Sci. Hung. 62 (2): 191–216. 10.17109/AZH.62.2.X.2016Search in Google Scholar

Kapusta A., Bogacka-Kapusta E. & Czarnecki B. 2008. The significance of stone moroko, Pseudorasbora parva (Temminck and Schlegel), in the small-sized fish assemblages in the littoral zone of the heated Lake Licheńskie. Arch. Pol. Fish. 16 (1): 49–62. 10.2478/s10086-008-0004-6Search in Google Scholar

Keller R.P., Geist J., Jeschke J.M. & Kühn I. 2011. Invasive species in Europe: ecology, status, and policy. Environmental Sciences Europe 23: 23. 10.1186/2190-4715-23-23Search in Google Scholar

Kornis M.S., Mercado-Silva N. & Vander Zanden M.J. 2012. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. J. Fish. Biol. 80 (2): 235–285. 10.1111/j.1095-8649.2011.03157.xSearch in Google Scholar

Kotusz J. & Witkowski A. 1998. Morphometrics of Pseudorasbora parva (Schlegel, 1842) (Cyprinidae: Gobininae), a species introduced into the Polish waters [Morfometria czebaczka amurskiego Pseudorasbora parva (Schlegel, 1842) (Cyprinidae: Gobininae), introdukowanego do wod Polski]. Acta Ichthyol. Piscat. 28 (2): 3–14. 10.3750/AIP1998.28.2.01Search in Google Scholar

Lee V.A. & Johnson T.B. 2005. Development of a bioenergetics model for the round goby (Neogobius melanostomus). J. Great Lakes Res. 31 (2): 125–134. 10.1016/S0380-1330(05)70244-6Search in Google Scholar

Lehtonen H. & Lappalainen J. 1995. Effects of climate on the year-class variations of certain freshwater fish species, pp. 37–44. In: Beamish R.J. (ed.), Climate Change and Northern Fish Populations, Canadian Special Publication of Fisheries and Aquatic Sciences 121, National Research Council of Canada, Ottawa, 739 pp. ISBN: 978-0-660-15780-1, e-ISBN: 978-0-9877172-3-8Search in Google Scholar

MacInnis A.J. & Corkum L.D. 2000. Fecundity and reproductive season of the round goby Neogobius melanostomus in the upper Detroit River. Trans. Am. Fish. Soc. 129 (1): 136–144. 10.1577/1548-8659(2000)129<0136:FARSOT>2.0.CO;2Search in Google Scholar

Mann R.H.K. 1974. Observations on the age, growth, reproduction and food of the dace Leuciscus leuciscus (L.), in two rivers in southern England. J. Fish Biol. 6 (3): 237–253. 10.1111/j.1095-8649.1974.tb04542.xSearch in Google Scholar

Mann R.H.K. 1996. Environmental requirements on european non-salmonid fish in rivers. Hydrobiologia 323 (3): 223–235. 10.1007/BF00007848Search in Google Scholar

Masson G., Valente E., Fox M.G. & Copp G.H. 2015. Thermal influences on life-history traits and reproductive effort of introduced pumpkinseed sunfish Lepomis gibbosus in the River Moselle basin (northeastern France). River Res. Appl. 31 (5): 563–575. 10.1002/rra.2761Search in Google Scholar

Meffe G.K. 1992. Plasticity of life-history characters in eastern mosquitofish (Gambusia holbrooki: Poeciliidae) in response to thermal stress. Copeia 1992 (1): 94–102. 10.2307/1446539Search in Google Scholar

Miller P.J. 1986. Gobiidae, pp. 1019–1095. In: Whitehead P.J.P., Bauchot M.L., Hureau J.C., Nielsen J., Tortonese E. (eds), Fishes of the North-East Atlantic and the Mediterranean 3 (final volume), UNESCO, Paris, pp. 1013–1473 pp. ISBN: 9230023086, 9789230023089Search in Google Scholar

Mortsch L.D. & Quinn F.H. 1996. Climate change scenarios for Great Lakes basin ecosystem studies. Limnol. Oceanogr. 41 (5): 903–911. 10.4319/lo.1996.41.5.0903Search in Google Scholar

Moskalkova K.I. 1996. Ekologicheskie i morfo-fiziologicheskie predposylki k razshireniyu areala u bychka-kruglyaka Neogobius melanostomus v usloviyakh antropongennogo zagryazneniya vodoemov [Ecological and morphophysiological prerequisites to range extension in the round goby Neogobius melanostomus under conditions of anthropogenic pollution]. J. Ichthyol. 36 (5): 584–590.Search in Google Scholar

Naspleda J., Vila-Gispert A., Fox M.G., Zamora L. & Ruiz-Navarro A. 2012. Morphological variation between non-native lake- and stream-dwelling pumpkinseed Lepomis gibossus in the Iberian Peninsula. J. Fish Biol. 81 (6): 1915–1935. 10.1111/j.1095-8649.2012.03416.xSearch in Google Scholar

Nowosad J., Targońska K., Chwaluczyk R., Kaszubowsky R. & Kucharczyk D. 2014. Effect of temperature on the effectiveness of artificial reproduction of dace [Cyprinidae (Leuciscus leuciscus (L.))] under laboratory and field conditions. J. Therm. Biol. 45: 62–68. 10.1016/j.jtherbio.2014.07.011Search in Google Scholar

Okada Y. 1961. Studies on the freshwater fishes of Japan. Journal of the Faculty of Fisheries. Prefectural University of Mie 4 (1-3): 267–890.Search in Google Scholar

Pankhurst N.W. & Munday P.L. 2011. Effects of climate change on fish reproduction and early life history stages. Mar. Freshwater Res. 62 (9): 1015–1026. 10.1071/MF10269Search in Google Scholar

Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37: 637–669. 10.1146/annurev.ecolsys.37.091305.110100Search in Google Scholar

Perry A.L., Low P.J., Ellis J.R. & Reynolds J.D. 2005. Climate change and distribution shifts in marine fishes. Science 308 (5730): 1912–1915. 10.1126/science.1111322Search in Google Scholar PubMed

Pettorelli N. 2013. The Normalized Difference Vegetation Index. Oxford University Press, New York, 208 pp. ISBN: 978-0-19-969316-010.1093/acprof:osobl/9780199693160.001.0001Search in Google Scholar

Philippart J.C. 1981. Ecologie d’une population de vandoise, Leuciscus leuciscus (L.) dans la riviere Ourthe (bassin de la Meuse, Belgique). Ann. Limnol. 17 (1): 41–62. doi:10.1051/limn/1981016Search in Google Scholar

Pinchuk V.I., Vasileva E.D., Vasilev V.P. & Miller P.J. 2003. Neogobius melanostomus (Pallas, 1814), pp. 293–345. In: Miller P.J. (ed.), The Freshwater Fishes of Europe, Vol. 8, Part I, Mugilidae, Atherinidae, Atherinopsidae, Blennidae, Odontobutidae, Gobiidae 1, AULA-Verlag GmbH Wiebelsheim, Verlag für Wissenschaft und Forschung, Germany, 404 pp. ISBN: 3891046685 9783891046685Search in Google Scholar

Rahel F.J. 2000. Homogenization of fish faunas across the United States. Science 288 (5467): 854–856. 10.1126/science.288.5467.854Search in Google Scholar PubMed

Rahel F.J. & Olden J.D. 2008. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22 (3): 521–533. 10.1111/j.1523-1739.2008.00950.xSearch in Google Scholar PubMed

Reznick D., Schultz E., Morey S. & Roff D. 2006. On the virtue of being the first born: the influence of date of birth on fitness in the mosquitofish, Gambusia affinis. Oikos 114 (1): 135–147. 10.1111/j.2006.0030-1299.14446.xSearch in Google Scholar

Rijnsdorp A.D., Peck M.A., Engelhard G.H., Mollmann Ch. & Pinnegar J.K. 2009. Resolving the effects of climate change on fish populations. J. Mar. Sci. 66 (7): 1570–1583. 10.1093/icesjms/fsp056Search in Google Scholar

Sergeant Ch.J., Armstrong J.B. & Ward E.J. 2015. Predator-prey migration phenologies remain synchronisedin a warming catchment. Freshwater Biol. 60 (4): 724–732. 10.1111/fwb.12524Search in Google Scholar

Sharma S., Jackson D.A., Minns Ch.K. & Shuter B.J. 2007. Will northern fish populations be in hot water because of climate change? Glob. Change Biol. 13 (10): 2052–2064. 10.1111/j.1365-2486.2007.01426.xSearch in Google Scholar

Somero G.N. 2009. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. J. Exp. Biol. 213 (6): 912–920. 10.1242/jeb.037473Search in Google Scholar

Specziár A. 2004. Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusia holbrooki, in a thermal spa under temperate climate, of Lake Hévíz, Hungary. Hydrobiologia 522 (1): 249–260. 10.1023/B:HYDR.0000029978.46013.d1Search in Google Scholar

Šumer S., Kovác V., Povž M. & Slatner M. 2005. External morphology of a Slovenian population of pumpkinseed Lepomis gibbosus (L.) from a habitat with extreme thermal conditions. J. Appl. Ichthyol. 21 (4): 306–311. 10.1111/j.1439-0426.2005.00691.xSearch in Google Scholar

Tereshchenko V.G., Kapusta A., Wilkońska H. & Strelnikova A.P. 2007. Long-term changes in 0+ fish assemblages in littoral zones of heated lakes. II. Species structure of ichthyofauna. Arch. Pol. Fish. 15 (4): 431–443.Search in Google Scholar

Verreycken H. 2013. Risk analysis of the round goby, Neogobius melanostomus. Risk analysis report of non-native organisms in Belgium. Rapporten van het Instituut voor Natuur- en Bosonderzoek 2013, INBO.R.2013.42, Instituut voor Natuur- en Bosonderzoek, Belgium, 29 pp.Search in Google Scholar

Vondracek B., Wurstbaugh W.A. & Cech J.J. 1988. Growth and reproduction of the mosquitofish (Gambusia affinis) in relation to temperature and ration level: consequences for life history. Environ. Biol. Fish. 21 (1): 45–57. 10.1007/BF02984442Search in Google Scholar

Walther G.R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J.M., Hoegh-Guldberg O. & Bairlein F. 2002. Ecological responses to recent climate change. Nature 416: 389–395 10.1038/416389aSearch in Google Scholar

Watt W.B. & Dean A.M. 2000. Molecular-functional studies of adaptive genetic variation in prokaryotes and eukaryotes. Annu. Rev. Genet. 34: 593–622. 10.1146/annurev.genet.34.1.593Search in Google Scholar

Webb B.W. 1996. Trends in stream and river temperature. Hydrol. Process. 10 (2): 205–226. 10.1002/(SICI)1099-1085(199602)10:2<205::AID-HYP358>3.0.CO;2-1Search in Google Scholar

Whitehead P.G., Wilby R.L., Battarbee R.W., Kernan M. & Wade A.J. 2009. A review of the potential impacts of climate change on surface water quality. Hydrolog. Sci. 54 (1): 101–123. 10.1623/hysj.54.1.101Search in Google Scholar

Wilson J.B. 1990. Mechanisms of species coexistence – 12 explanations for Hutchinson Paradox of the plankton – evidence from New-Zealand plan-communities. New Zeal. J. Ecol 13: 17–42.Search in Google Scholar

Winder M. & Schindler D.E. 2004. Climatic effects on the phenology of lake processes. Glob. Change Biol. 10 (11): 1844–1856. 10.1111/j.1365-2486.2004.00849.xSearch in Google Scholar

Yavno S., Fox M.G., Vila-Gispert A. & Bhagat Y. 2013. Morphological differences between native and non-native pumpkinseed in traits associated with locomotion. Environ. Biol. Fish. 96 (4): 507–518. 10.1007/s10641-012-0053-ySearch in Google Scholar

Záhorská E., Balážová M. & Šúrová M. 2013a. Morphology, sexual dimorphism and size at maturation in topmouth gudgeon (Pseudorasbora parva) from the heated Lake Licheńskie (Poland). Knowl. Managt. Aquat. Ecosyst. 411: 07. 10.1051/kmae/2013074Search in Google Scholar

Záhorská E. & Kovác V. 2013. Environmentally induced shift in reproductive traits of a long-term established population of topmouth gudgeon (Pseudorasbora parva). J. Appl. Ichthyol. 29 (1): 218–220. 10.1111/jai.12039Search in Google Scholar

Záhorská E., Kovác V., Falka I., Beyer K., Katina S., Copp G.H. & Gozlan R.E. 2009. Morphological variability of the Asiatic cyprinid, topmouth gudgeon Pseudorasbora parva, in its introduced European range. J. Fish Biol. 74 (1): 167–185. 10.1111/j.1095-8649.2008.02121.xSearch in Google Scholar PubMed

Záhorská E., Kovác V., Švolíková K. & Kapusta A. 2014. Reproductive parameters of topmouth gudgeon from a heated Lake Licheńskie (Poland). Cent. Eur. J. Biol. 9 (2): 212–219. 10.2478/s11535-013-0252-3Search in Google Scholar

Záhorská E., Švolíková K. & Kovác V. 2013b. Do invasive populations of topmouth gudgeon (Pseudorasbora parva, Temminck and Schlegel) from disturbed and undisturbed habitats follow different life-histories? Int. Rev. Hydrobiol. 98 (2): 61–70. 10.1002/iroh.201201446Search in Google Scholar

Zięba G., Fox M.G. & Copp G.H. 2010. The effect of elevated temperature on spawning of introduced pumpkinseed Lepomis gibbosus in Europe. J. Fish Biol. 77 (8): 1850–1855. 10.1111/j.1095-8649.2010.02778.xSearch in Google Scholar PubMed

Received: 2016-3-23
Accepted: 2016-5-11
Published Online: 2016-8-11
Published in Print: 2016-7-1

©2016 Institute of Zoology, Slovak Academy of Sciences