Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 11, 2016

Molecular and immunological characterization of Lp1, the 34 kDa outer membrane lipoprotein of Pseudomonas aeruginosa

Anand Kumar, Sada Shiva Naravarjula and Mira Debnath Das
From the journal Biologia

Abstract

Polysaccharide-based vaccine for Pseudomonas aeruginosa has failed due to toxicity of lipid-A portion in liposaccharide. As a result, efforts to develop vaccine against P. aeruginosa have mostly focused on outer membrane protein (OMP). Vaccine candidates based on P. aeruginosa OMP have emerged in the form of purified recombinant protein, as alternative strategy for vaccine development. In the present study, we have determined the immunogenicity and protective capacity of Lp1 protein (as antigen). For this work we have cloned lp1 gene (897 bp) into the pET32a expression vector and after expression a 34 kDa recombinant protein was obtained by induction with 0.5 mM isopropyl β-D-1-thiogalactopyranoside. The antigen was obtained as a recombinant protein in E. coli, purified and used to immunize mice. The antiserum developed against the lp1 antigen was capable to recognize the antigen by western blotting. After immunization, recombinant Lp1 induced bactericidal antibodies. These results suggest that Lp1 is a novel antigen worth to be included in a broadly protective P. aeruginosa vaccine.

References

Cordwell S.J. 2004. Exploring and exploiting bacterial proteomes. Methods Mol. Biol. 266: 115–135.10.1385/1-59259-763-7:115Search in Google Scholar

Cryz S.R. Jr, Furer E. & Germanier R. 1983. Passive protection against Pseudomonas aeruginosa infection in an experimental leucopenic mouse model. Infect. Immun. 40: 659–664.10.1128/iai.40.2.659-664.1983Search in Google Scholar

Cryz S.J. Jr, Sadoff J.C., Ohmann D. & Futer E. 1988. Characterization of the human immune response to a Pseudomonas aeruginosa 0-polysaccharide–toxin A conjugate vaccine. J. Lab. Clin. Med. 111: 701–707.Search in Google Scholar

Deich R.A., Metcalf B.J., Finn C.W., Farley J.E. & Green B.A. 1988. Cloning of genes encoding a 15,000 dalton peptidoglycan associated outer membrane lipoprotein and an antigenically related 15,000 dalton protein from Haemophilus influenzae. J. Bacteriol. 170: 489–498.10.1128/jb.170.2.489-498.1988Search in Google Scholar

Engleberg N.C., Howe D.C., Rogers J.E., Arroyo J. & Eisenstein B.I. 1991. Characterization of a Legionella pneumophila gene encoding a lipoprotein antigen. Mol. Microbiol. 5: 2021–2029.10.1111/j.1365-2958.1991.tb00824.xSearch in Google Scholar

Firoved A.M., Ornatowski W. & Deretic V. 2004. Microarray analysis reveals induction of lipoprotein genes in mucoid Pseudomonas aeruginosa: implications for inflammation in cystic fibrosis. Infect. Immun. 72: 5012–5018.10.1128/IAI.72.9.5012-5018.2004Search in Google Scholar

Halegoua S., Hirashima A. & Inouye M. 1974. Existence of a free form of a specific membrane lipoprotein in gram–negative bacteria. J. Bacteriol. 120: 1204–1208.10.1128/jb.120.3.1204-1208.1974Search in Google Scholar

Klade C.S. 2002. Proteomics approaches towards antigen discovery and vaccine development. Curr. Opin. Mol. Ther. 4: 216–223.Search in Google Scholar

Lewenza S., Gardy J.L., Brinkman F.S. & Hancock R.E. 2005. Genome–wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory–based PhoA fusion screen. Genome Res. 15: 321–329.10.1101/gr.3257305Search in Google Scholar

Liang M.D., Bagchi A., Warren H.S., Tehan M.M., Trigilio J.A., Beasley–Topliffe L.K., Tesini B.L., Lazzaroni J.C., Fenton M.J. & Hellman J. 2005. Bacterial peptidoglycan–associated lipoprotein: a naturally occurring toll–like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide. J. Infect. Dis. 191: 939–948.10.1086/427815Search in Google Scholar

Lim A. Jr, De Vos D., Brauns M., Mossialos D., Gaballa A., Qing D. & Cornelis P. 1997. Molecular and immunological characterization of OprL, the 18 kDa outer–membrane peptidoglycan–associated I ipoprotein (PAL) of Pseudomonas aeruginosa. Microbiology 143: 1709–1716.10.1099/00221287-143-5-1709Search in Google Scholar

Lyczak J.B., Cannon C.L. & Pier G.B. 2000. Establishment of P. aeruginosa infection: lesions from a versatile opportunist. Microbes Infect. 2: 1051–1060.10.1016/S1286-4579(00)01259-4Search in Google Scholar

Lyczak J.B., Cannon C.L. & Pier G.B. 2002. Lung infection associated with cystic fibrosis. Clin. Microbiol. Rev. 15: 194–222.10.1128/CMR.15.2.194-222.2002Search in Google Scholar PubMed PubMed Central

Mizuno T. & Kageyama M. 1979. Isolation and characterization of a major outer membrane protein of Pseudomonas aeruginosa. J. Biochem. 85: 115–122.10.1093/oxfordjournals.jbchem.a132300Search in Google Scholar PubMed

Moira M.B., Ghoneim A.T.M., Littlewood J.M. & Losowsky M.S. 1986. Development of enzyme linked immunosorbent assay (ELISA) to detect antibodies to Pseudomonas aeruginosa cell surface antigens in sera of patients with cystic fibrosis. J. Clin. Pathol. 39: 1124–1129.10.1136/jcp.39.10.1124Search in Google Scholar PubMed PubMed Central

Mollenkopf H.J., Grode L., Mattow J., Stein M., Mann P. & Knapp B. 2004. Application of mycobacterial proteomics to vaccine design: improved protection by Mycobacterium bovis BCG prime–Rv3407 DNA boost vaccination against tuberculosis. Infect. Immun. 72: 1–9.10.1128/IAI.72.11.6471-6479.2004Search in Google Scholar PubMed PubMed Central

Mutharia L.M., Nicas T.I. & Hancock R.E.W. 1982. Outer membrane proteins of Pseudomonas aeruginosa serotype strains. J. Infect. Dis. 146: 770–779.10.1093/infdis/146.6.770Search in Google Scholar PubMed

Pennington J.E., Hickey W.F., Blackwood F. & Arnaut M. 1981. Active immunization with lipopolysaccharide Pseudomonas antigen for chronic Pseudomonas bronchopneumonia in guinea pigs. J. Clin. Invest. 68: 1140–1148.10.1172/JCI110358Search in Google Scholar PubMed PubMed Central

Priebe G.P., Meluleni G.J., Coleman F.T., Goldberg J.B. & Pier G.B. 2003. Protection against fatal Pseudomonas aeruginosa pneumonia in mice after nasal immunization with a live, attenuated aroA deletion mutant. Infect. Immun. 71: 1453–1461.10.1128/IAI.71.3.1453-1461.2003Search in Google Scholar PubMed PubMed Central

Remans K., Vercammen K., Bodilis J. & Cornelis P. 2010. Genome–wide analysis and literature–based survey of lipoproteins in Pseudomonas aeruginosa. Microbiology 156: 2597–2607.10.1099/mic.0.040659-0Search in Google Scholar PubMed

Roe E.A. & Jones R.J. 1983. Immunization of burned patients against Pseudomonas aeruginosa infection at Safdarjang Hospital, New Delhi. Rev. Infect. Dis. 5: 922–930.10.1093/clinids/5.Supplement_5.S922Search in Google Scholar

Rosenqvist E., Wedege E., Hoiby E.A. & Froholm L.O. 1990. Serogroup determination of Neisseria meningitidis by wholecell ELISA, dot–blotting and agglutination. APMIS 98: 501–506.10.1111/j.1699-0463.1990.tb01063.xSearch in Google Scholar

Scarselli M., Giuliani M.M., Adu–Bobie J., Pizza M. & Rappuoli R. 2005. The impact of genomics on vaccine design. Trends Biotechnol. 23: 84–91.10.1016/j.tibtech.2004.12.008Search in Google Scholar

Schaad, U.B., Lang A.B., Wedgwood J., Ruedeberg A. & J.U., Flirer E. & Cryz S.J. 1991. Safety and immunogenicity of Pseudomonas aeruginosa conjugate A vaccine in cystic fibrosis. Lancet. 228: 1236–1237.10.1016/0140-6736(91)92103-9Search in Google Scholar

Stanislavsky E.S. & Lam J.S. 1997. Pseudomonas aeruginosa antigens as a potential vaccines. FEMS Microbiol. Rev. 21: 243–277.10.1111/j.1574-6976.1997.tb00353.xSearch in Google Scholar

Tibor, A., Weynants, V., Denoel, P., Lichtfouse, B., De Bolle, X., Saman, E., Limet, J. & Letesson, J. J. 1994. Molecular cloning, nucleotide sequence, and occurrence of a 16.5 kilo–dalton outer membrane protein of Brucella abortus with similarity to PAL lipoproteins. Infect. Immun. 62: 3633–3639.10.1128/iai.62.9.3633-3639.1994Search in Google Scholar

Towbin H., Staehelin T. & Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4354.10.1073/pnas.76.9.4350Search in Google Scholar

Vytvytska O., Nagy E., Bluggel M., Meyer H.E., Kurzbauer R. & Huber L.A. 2002. Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2: 580–90.10.1002/1615-9861(200205)2:5<580::AID-PROT580>3.0.CO;2-GSearch in Google Scholar

Winsor G.L., Van Rossum T., Lo R., Khaira B., Whiteside M.D., Hancock R.E. & Brinkman F.S. 2009. Pseudomonas genome database: facilitating user–friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res. 37: D483-D488.10.1093/nar/gkn861Search in Google Scholar

Ying T., Wang H., Li M., Wang J. & Shi Z. 2005. Immunoproteomics of outer membrane proteins and extracellular proteins of Shigella flexneri 2a 2457T. Proteomics 5: 77–93.10.1002/pmic.200401326Search in Google Scholar

Abbreviations
ELISA

enzyme linked immunosorbent assay

LPS

lipopolysaccharide

OMP

outer membrane protein

OD

optical density

Received: 2015-12-31
Accepted: 2016-7-3
Published Online: 2016-8-11
Published in Print: 2016-7-1

©2016 Institute of Molecular Biology, Slovak Academy of Sciences