Abstract
The use of electromagnetic field in the treatment of diseases has already been known for centuries. Low hazard, wide applicability, good clinical effect and the relatively low cost enable the electromagnetic field therapy to be widely used. The biological effect of the electromagnetic field is based on inter alia, analgesic, anti-inflammatory, osteogenetic and regenerative actions, which are associated with the changes in cellular signal transmission, action on biological membranes, ion transport processes, protein synthesis, cell proliferation and apoptosis. In addition, the electromagnetic field increases quantity of collagen content elevating its density and a more regular arrangement. Furthermore, it induces the activation of glutathione peroxidase and intensification of the process of erythropoiesis leading to better use of oxygen in the tissues around the wound. The electromagnetic field is used in rehabilitation of patients with diseases of skeletal, nervous and respiratory systems. Moreover, electromagnetic field may be used in the course of most inflammatory diseases and in the case of concomitant pain. The objective of this paper is to present the actual state of knowledge on selected applications of electromagnetic field in the biomedical treatment area.
Abbreviations
- CAT
catalase
- COPD
chronic obstructive pulmonary disease
- CTS
carpal tunnel syndrome
- CVI
chronic venous insufficiency
- ELF-EMF
extremely low frequency electromagnetic field
- FEV1
forced expiratory volume in 1-second
- FVC
forced vital capacity
- GPx
glutathione peroxidase
- ICTP
C-terminal telopeptide of type I collagen
- IL-1β,2,8,10
interleukin 1β,2,8,10
- MAPK
mitogen activated protein kinase
- MCP-1/CCL2
monocyte chemoattractant protein-1
- MEF75
maximal expiratory flow
- MIP1α
macrophage inflammatory protein 1α
- NFκB
nuclear factor kappa-light-chain-enhancer of activated B cells
- PAF
platelet activating factor
- PEF
peak expiratory flow
- PGE2
prostaglandin E2
- PI3K
phosphoinositide 3-kinase
- PICP
C-terminal propeptide of type I procollagen
- PIIINP
N-terminal propeptide of type III procollagen
- ROS
reactive oxygen species
- SOD
superoxide dismutase
- VEGF
vascular endothelial growth factor
Acknowledgements
This study was supported by the Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz (No. 506/1136).
References
Aaron R.K., Wang S. & Ciombor D.M. 2002. Upregulation of basal TGFβ1 levels EMF coincident with chondrogenesis – implications of skeletal repair and tissue engineering. J. Orthop. Res. 20: 233–240.10.1016/S0736-0266(01)00084-5Search in Google Scholar
Bao X., Shi Y., Huo X. & Song T. 2006. Possible involvement of β-endorphin, substance P, and serotonin in rat analgesia induced by extremely low frequency magnetic field. Bioelectromagnetics 27: 467–472.10.1002/bem.20232Search in Google Scholar
Barker A.T., Dixon R.A., Sharrard W.J. & Sutcliffe M.L. 1984. Pulsed magnetic field therapy for tribial non-union. Interim results of a double-blind trial. Lancet 5: 994–996.10.1016/S0140-6736(84)92329-8Search in Google Scholar
Bediz C.S., Baltaci A.K., Mogulkoc R. & Oztekin E. 2006. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J. Exp. Med. 208: 133–140.10.1620/tjem.208.133Search in Google Scholar
Bernabo N., Saponaro I., Tettamanti E., Mattioli M. & Barboni B. 2014. Acute exposure to a 2?mT static magnetic field affects ionic homeostasis of in vitro grown porcine granulosa cells. Bioelectromagnetics 35: 231–234.10.1002/bem.21838Search in Google Scholar
Beuther D.A., Weiss S.T. & Sutherland E.R. 2006. Obesity and asthma. Am. J. Respir. Crit. Care Med. 174: 112–119.10.1164/rccm.200602-231PPSearch in Google Scholar
Bielecka-Dabrowa A., Gluba-Brzózka A., Michalska-Kasiczak M., Misztal M., Rysz J. & Banach M. 2015. The multi-biomarker approach for heart failure in patients with hypertension. Int. J. Mol. Sci. 16: 10715–107133.10.3390/ijms160510715Search in Google Scholar
Binic I., Ljubenovic M. & Mojsa J. 2013. Skin ageing: natural weapons and strategies. Evid. Based Complement. Alternat. Med. 2013: 827248.10.1155/2013/827248Search in Google Scholar
Blackman C., Benane S., Kinney L., Joines W.T. & House D.E. 1982. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat. Res. 92: 510–520.10.2307/3575923Search in Google Scholar
Całkosiński I., Borodulin-Nadzieja L., Stańda M., Wasilewska U. & Pietraszkiewicz T. 2003. Influence of therapeutic magnetic stimulation on concentrations of collagen tissue in the course of experimental pleuritis in rats. Medycyna Weterynaryjna 59: 161–164.Search in Google Scholar
Ciejka E., Gorąca A., Kowacka B. & Skibska B. 2007. Mechanizmy oddziaływania pola magnetycznego niskiej częstotliwośi na układy biologiczne. [Mechanisms of impact of low magnetic field on biological systems.] Fizjoterapia 15: 22–26.Search in Google Scholar
Ciejka E., Skibska B. & Gorąca A. 2010. Wpływ pola magnetycznego niskiej częstotliwośsci na stres oksydacyjny w tkance mięsniowej szczura. [Influence of the low frequency magnetic field on the parameters of oxidative stress in rat’s muscles.] Acta. Bio-Opt. Inform. Med. 3: 224–226.Search in Google Scholar
Ciombor D.M., Aaron R.K., Wang S. & Simon B. 2003. Modification of osteoarthritis by pulsed electromagnetic field – a morphological study. Osteoarthritis Cartilage 11: 455–462.10.1016/S1063-4584(03)00083-9Search in Google Scholar
Dakowicz A., Kuryliszyn-Moskal A., Kosztyła-Hojna B., Moskal D. & Latosiewicz R. 2011. Comparison of the long-term effectiveness of physiotherapy programs with low-level laser therapy and pulsed magnetic field in patients with carpal tunnel syndrome. Adv. Med. Sci. 56: 270–274.10.2478/v10039-011-0041-zSearch in Google Scholar
de la Rosa M., Rutz S., Dorninger H. & Scheffold A. 2004. Interleukin-2 is essential for CD4+ CD25+ regulatory T cell function. Eur. J. Immunol. 34: 2480–2488.10.1002/eji.200425274Search in Google Scholar
Eguchi Y., Ogiue-Ikeda M. & Ueno S. 2003. Control of orientation of rat Schwann cells using an 8-T static magnetic field. Neurosci. Lett. 351: 130–132.10.1016/S0304-3940(03)00719-5Search in Google Scholar
Frahn J., Lantow M., Lupke M., Weiss D.G. & Simkó M. 2006. Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J. Cell. Biochem. 1: 168–177.10.1002/jcb.20920Search in Google Scholar PubMed
Friedman N.J. & Zeiger R.S. 2005. The role of breast-feeding in the development of allergies and asthma. J. Allergy Clin. Immunol. 115: 1238–1248.10.1016/j.jaci.2005.01.069Search in Google Scholar PubMed
Gkogkolou P., Meyer V. & Goerge T. 2015. Chronische venöse Insuffizienz: Aktuelles zur Pathophysiologie, Diagnostik und Therapie. [Chronic venous insufficiency: Update on patho-physiology, diagnosis and treatment.] Hautarzt 66: 375–385.10.1007/s00105-015-3620-2Search in Google Scholar PubMed
Guerkov H.H., Lohmann C.H., Liu Y., Dean D.D., Simon B.J., Heckman J.D., Schwartz Z. & Boyan B.D. 2001. Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin. Orthop. Relat. Res. 384: 265–279.10.1097/00003086-200103000-00031Search in Google Scholar PubMed
Halle B. 1988. On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity. Bio-electromagnetics 9: 381–385.10.1002/bem.2250090408Search in Google Scholar PubMed
Jawień A., Grzela T. & Ochwat A. 2003. Prevalence of chronic venous insufficiency in men and women in Poland: multicentre cross-sectional study in 40,095 patients. Phlebology 3: 110–122.10.1258/026835503322381315Search in Google Scholar
Kennedy J.M. & Zochodne D.W. 2005. Impaired peripheral nerve regeneration in diabetes mellitus. J. Peripher. Nerv. Syst. 10: 144–157.10.1111/j.1085-9489.2005.0010205.xSearch in Google Scholar PubMed
Kurzeja E., Synowiec-Wojtarowicz A., Stec M., Glinka M., Gawron S. & Pawłowska-Góral K. 2013. Effect of a static magnetic fields and fluoride ions on the antioxidant defence system of mice fibroblasts. Int. J. Mol. Sci. 14: 15017–15028.10.3390/ijms140715017Search in Google Scholar
Longo F.M., Yang T., Hamilton S., Hyde J.F., Walker J., Jennes L., Stach R. & Sisken B.F. 1999. Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J. Neurosci. Res. 55: 230–237.10.1002/(SICI)1097-4547(19990115)55:2<230::AID-JNR10>3.0.CO;2-3Search in Google Scholar
Marcinkowska-Gapinska A. & Nawrocka-Bogusz H. 2013. Analysis of the magnetic field influence on the rheological properties of healthy persons blood. Biomed. Res. Int. 2013: 490410.10.1155/2013/490410Search in Google Scholar
Mark M.J. 2002. Descending control of pain. Prog. Neurobiol. 66: 355–474.10.1016/S0301-0082(02)00009-6Search in Google Scholar
Markov M. 2015. XXIst century magnetotherapy. Electromagn. Biol. Med. 34: 190–196.10.3109/15368378.2015.1077338Search in Google Scholar
Minoia P. & Sciorsci R.L. 2001. Metabolic control through L-calcium channel, PKC and opioid receptors modulation by an association of naloxone and calcium salts. Curr. Drug Targets Immune Endocr. Metabol. Disord. 1: 131–137.10.2174/1568005310101020131Search in Google Scholar
Murabayashi S. 2013. Application of magnetic field for biological response modification. Biomed. Mater. Eng. 23: 117–128.10.3233/BME-120737Search in Google Scholar
Nicolaides A.N., Allegra C., Bergan J., Bradbury A., Cairols M., Carpentier P., Comerota A., Delis C., Eklof B., Fassiadis N., Georgiou N., Geroulakos G., Hoffmann U., Jantet G., Jawien A., Kakkos S., Kalodiki E., Labropoulos N., Neglen P., Pappas P., Partsch H., Perrin M., Rabe E., Ramelet A.A., Vayssaira M., Ioannidou E. & Taft A. 2008. Management of chronic venous disorders of the lower limbs: guidelines according to scientific evidence. Int. Angiol. 27: 1–59.10.1016/S0398-0499(09)75325-9Search in Google Scholar
Ober C. 2005. Perspectives on the past decade of asthma genetics. J. Clin. Immunol. 116: 274–278.10.1016/j.jaci.2005.04.039Search in Google Scholar
Ongaro A., Varani K., Masieri F.F., Pellati A., Massari L., Cadossi R., Vincenzi F., Borea P.A., Fini M., Caruso A. & De Mattei M. 2012. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E2 and cytokine release in human osteoarthritic synovial fibroblasts. J. Cell. Physiol. 227: 2461–2469.10.1002/jcp.22981Search in Google Scholar
Pascarella L. & Shortell C.K. 2015. Medical management of venous ulcers. Semin. Vasc. Surg. 28: 21–28.10.1053/j.semvascsurg.2015.06.001Search in Google Scholar
Prato F.S., Kavaliers M. & Thomas A.W. 2000. Extremely low frequency magnetic fields can either increase or decrease analgeasia in the land snail depending on field and light conditions. Bioelectromagnetics 21: 287–301.10.1002/(SICI)1521-186X(200005)21:4<287::AID-BEM5>3.0.CO;2-NSearch in Google Scholar
Raus B.S., Selakovic V., Radenovic L., Prolic Z. & Janac B. 2014. Extremely low frequency magnetic field (50 Hz, 0.5 mT reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PLoS One 9: e88921.10.1371/journal.pone.0088921Search in Google Scholar
Rohde C., Chiang A., Adipoju O., Casper D. & Pilla A.A. 2010. Effects of pulsed electromagnetic fields on interleukin-1 beta and postoperative pain: a double-blind, placebo-controlled, pilot study in breast reduction patients. Plast. Reconstr. Surg. 125: 1620–1629.10.1097/PRS.0b013e3181c9f6d3Search in Google Scholar
Sadlonova J., Korpas J., Salat D., Miko L. & Kudlicka J. 2003. The effect of the pulsatile electromagnetic field in children suffering from bronchial asthma. Acta Physiol. Hung. 90: 327–334.10.1556/APhysiol.90.2003.4.6Search in Google Scholar
Sadlonova J., Korpas J., Vrabec M., Salat D., Buchancova J. & Kudlicka J. 2002. The effect of the pulsatile electromagnetic field in patients suffering from chronic obstructive pulmonary disease and bronchial asthma. Bratisl. Lek. Listy. 103: 260–265.Search in Google Scholar
Saliev T., Mustapova Z., Kulsharova G., Bulanin D. & Mikhalovsky S. 2014. Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell. Prolif. 47: 485–493.10.1111/cpr.12142Search in Google Scholar
Sieroń A., Cieślar G., Kawczyk-Krupka A., Biniszkiewicz T., Bilska-Urban A. & Adamek M. 2002. Podstawy teoretyczne, pp. 15–36. In: Sieroń A., Cieślar G. & Kawczyk-Krupka A. (eds) Zastosowanie pól magnetycznych w medycynie, 2nd Ed, supplemented and extended. Bielsko-Biala, α-Medica Press.Search in Google Scholar
Sieroń A., Franek A., Brzezińska-Wcisło L., Błaszczak E., Taradaj J., Kuśka R., Kamińska-Winciorek G. & Cieślar G. 2005. Próba obiektywizacji oceny skuteczności terapeutycznej magnetostymulacji w leczeniu owrzodzeń żylnych podudzi. [Attempt to objective estimation of therapeutical efficacy of magnetostimulation in the treatment of venous leg ulcers.] Balneologia Polska 1–2: 33–40.Search in Google Scholar
Sieroń A. & Glinka M. 2002. Wpływ pól magnetycznych o zakresach terapeutycznych na proces gojenia się skóry i tkanek miękkich. Chirurgia Polska 4: 153–158.Search in Google Scholar
Sigurs N., Bjamason R., Sigurgergsson F. & Kjellman B. 2000. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care. Med. 161: 1501–1507.10.1164/ajrccm.161.5.9906076Search in Google Scholar
Soda A., Ikehara T., Kinouchi Y. & Yoshizaki K. 2008. Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signalling pathways in osteoblast-like cells. J. Med. Invest. 55: 267–278.10.2152/jmi.55.267Search in Google Scholar
Sosnowski P., Mikrut K., Paluszak J., Krauss H., Koźlik J. & Jaroszyk F. 1999. Aktywność enzymów antyoksydacyjnych we krwi szczurów poddanych długotrwałemu działaniu pola magnetycznego. [The antioxidative enzymes activity in blood of rats exposed to long-term magnetic field.] Balneologia Polska 41: 18–24.Search in Google Scholar
Stelmach I., Jerzyńska J., Stelmach W., Majak P., Chew G. & Kuna P. 2002. The prevalence of mouse allergen in inner-city homes. Pediatr. Allergy Immunol. 13: 299–302.10.1034/j.1399-3038.2002.01079.xSearch in Google Scholar
Thomas A.W., Kavaliers M., Prato F.S. & Ossenkopp K.P. 1997. Antinociceptive effects of pulsed magnetic field in the land snail, Capaea nemoralis. Neurosci. Lett. 222: 107–110.10.1016/S0304-3940(97)13359-6Search in Google Scholar
Tkaczuk-Włach J., Sobstyl M. & Jakiel G. 2011. Przewlekła niewydolność żylna u kobiet. [Chronic venous insufficiency in woman.] Przegląd Menopauzalny 4: 343–348.10.5114/pm.2012.30251Search in Google Scholar
Tokarz-Deptułla B., Miller T. & Deptułla W. 2011. Cytokiny z rodziny interleukiny 1. [The interleukin-1 family of cytokines.] Postępy Mikrobiologii 50: 217–221.Search in Google Scholar
Toledo E.J.L., Ramalho T.C. & Magriotis Z.M. 2008. Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models. J. Mol. Struct. 888: 409–415.10.1016/j.molstruc.2008.01.010Search in Google Scholar
Varani K., De Mattei M., Vincenzi F., Gessi S., Merighi S., Pellati A., Ongaro A., Caruso A., Cadossi R. & Borea P.A. 2007. Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis Cartilage 16: 292–304.10.1016/j.joca.2007.07.004Search in Google Scholar PubMed
Vianale G., Reale M., Amerio P., Stefanachi M., Di Luzio S. & Muraro R. 2008. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br. J. Dermatol. 158: 1189–1196.10.1111/j.1365-2133.2008.08540.xSearch in Google Scholar PubMed
Vincenzi F., Targa M., Corciulo C., Gessi S., Merighi S., Setti S., Cadossi R., Goldring M.B., Borea P.A. & Varani K. 2013. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 8: e65561.10.1371/journal.pone.0065561Search in Google Scholar PubMed PubMed Central
Weintraub M.I. & Cole S.P. 2008. A randomized controlled trial of the effects of a combination of static and dynamic magnetic fields on carpal tunnel syndrome. Pain Med. 9: 493–504.10.1111/j.1526-4637.2007.00324.xSearch in Google Scholar PubMed
Weintraub M.I., Herrmann D.N., Smith A.G., Backonja M.M. & Cole S.P. 2009. Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: a randomized controlled trial. Arch. Phys. Med. Rehabil. 90: 1102–1109.10.1016/j.apmr.2009.01.019Search in Google Scholar PubMed
Wilson S.L., Guilbert M., Sulé-Suso J., Torbet J., Jeannesson P., Sockalingum G.D. & Yang Y. 2014. A microscopic and macroscopic study of aging collagen on its molecular structure, mechanical properties, and cellular response. FASEB J. 8: 14–25.10.1096/fj.13-227579Search in Google Scholar PubMed
Wlaschek M. & Scharffetter-Kochanek K. 2005. Oxidative stress in chronic venous leg ulcers. Wound Repair Regen. 13: 452– 461.10.1111/j.1067-1927.2005.00065.xSearch in Google Scholar PubMed
Wróbel M.P., Szymborska-Kajanek A., Wystrychowski G., Biniszkiewicz T., Sieroń-Stołtny K., Sieroń A., Pierzchała K., Grzeszczak W. & Strojek K. 2008. Impact of low frequency pulsed magnetic fields on pain intensity, quality of life and sleep disturbances in patients with painful diabetic polyneuropathy. Diabetes Metab. 34: 349–354.10.1016/j.diabet.2008.02.003Search in Google Scholar PubMed
Yeoh-Ellerton S. & Stacey M.C. 2003. Iron and 8-isoprostane levels in acute and chronic wounds. J. Inv. Dermatol. 121: 918–925.10.1046/j.1523-1747.2003.12471.xSearch in Google Scholar PubMed
Zhao M., Bai H., Wang E., Forrester J.V. & McCaig C.D. 2004. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J. Cell Sci. 117: 397–405.10.1242/jcs.00868Search in Google Scholar PubMed PubMed Central
Żelaszczyk D., Waszkielewicz A. & Marona H. 2012. Kolagen – struktura oraz zastosowanie w kosmetologii i medycynie estetycznej. [Collagen – structure and application in cosmetology and aesthetic medicine.] Estetologia Medyczna i Kosmetologia 2: 14–20.10.14320/EMK.2012.003Search in Google Scholar
© 2016 Institute of Molecular Biology, Slovak Academy of Sciences