Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 24, 2016

Identification and molecular characterization of one novel 1Sl-encoded s-type low molecular weight glutenin B-subunit from 1Sl(1B) substitution line of wheat variety Chinese Spring (Triticum aestivum)

  • Xiong Deng , Shun-li Wang , Shou-min Zhen , Wen-ying Zhang and Yue-ming Yan EMAIL logo
From the journal Biologia

Abstract

Aegilops longissima (2n = 2x = 14, SlSl), has extensive allelic variations of glutenin subunits that are considered as useful gene sources for wheat quality improvement. The Chinese Spring 1Sl(1B) chromosome substitution line CS-1Sl(1B)showed superior dough properties and breadmaking quality due to the introgression of novel glutenin subunits encoded by 1Sl genome. In this study, we identified one novel 1Sl-encoded low molecular weight glutenin B-subunit 1SlLMW-s from CS-1Sl(1B). Its complete encoding sequences were isolated and designated as 1SlLMW-s with 960 bp encoding 318 amino acid residues. Molecular characterization demonstrated that the deduced 1SlLMW-s subunit had a rather large and regular repeated sequence domain, including a high proportion of glutamine residues (about 44%) in the repeats (consensus sequence PPFSQQQQ). A total of 31 SNPs were detected at different positions of encoding sequences. The secondary structure prediction revealed higher β-strand and α-helix content present in 1SlLMW-s. Phylogenetic tree revealed that 1SlLMW-s had close evolutionary relationship with other s-type low molecular weight glutenin subunit (LMW-GSs) genes from different Triticum and Aegilops genomes, which was divergent from LMW-s type gene subfamily at 3.92–5.23 million years ago (MYA). LMW-GSs play a key role in improving breadmaking quality. Abundant expression and specific structural features could contribute to superior gluten quality, including larger and more regular repeated domain, higher proportion of glutamine residues and higher β-strand and α-helix content. This could facilitate the formation of stronger dough structure and superior breadmaking quality. Our work demonstrated that Sl genome had potential glutenin gene resources, and particularly 1SlLMW-s gene could be useful for wheat quality improvement


Electronic supplementary material. The online version of this article (DOI: 10.1515/biolog-2016-0147) contains supplementary material, which is available to authorized users.


Acknowledgements

This research was financially supported by grants from the Ministry of Science and Technology of China (2016YFD010 0500), the National Natural Science Foundation of China (31471485), and the Natural Science Foundation of Beijing City/the Key Developmental Project of Science and Technology from Beijing Municipal Commission of Education (KZ201410028031).

References

Allaby R.G., Banerjee M. & Brown T.A. 1999. Evolution of the high molecular weight glutenin loci of the A, B, D, and G genomes of wheat. Genome 42: 296–307.Search in Google Scholar

An X.L., Zhang Q., Yan Y.M., Li Q.Y., Zhang Y.Z., Wang A.L., Pei Y.H., Tian J.Z., Wang H., Hsam S.L.K. & Zeller F.J. 2006. Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor. Appl. Genet. 113: 383–395.10.1007/s00122-006-0299-xSearch in Google Scholar PubMed

Butow B.J., Ma W., Gale K.R., Cornish G.B., Rampling L., Larroque O., Morell M.K. & Békés F. 2003. Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theor. Appl. Genet. 107: 1524–1532.10.1007/s00122-003-1396-8Search in Google Scholar PubMed

Cornish G.B., Bekes F., Allen H.M. & Martin D.J. 2001. Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Aust. J. Agric. Res. 52: 1339–1348.10.1071/AR01060Search in Google Scholar

Cassidy B.G., Dvorak J. & Anderson O.D. 1998. The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor. Appl. Genet. 96: 743–750.10.1007/s001220050797Search in Google Scholar

Chen F.G., Luo Z., Zhang Z.G., Xia G.M. & Min H.X. 2007. Variation and potential value in wheat breeding of low-molecular-weight glutenin subunit genes cloned by genomic and RT-PCR in a derivative of somatic introgression between common wheat and Agropyron elongatum. Mol. Breed. 20: 141–152.10.1007/s11032-007-9081-2Search in Google Scholar

Cao H., Yan X., Chen G.X., Zhou J.W., Li X.H., Ma W.J. & Yan Y.M. 2015. Comparative proteome analysis of A- and B-type starch granule-associated proteins in bread wheat( Triticum aestivum L.) and Aegilops crassa. J. Proteomics 112: 95–112.10.1016/j.jprot.2014.08.002Search in Google Scholar PubMed

D’Ovidio R. & Masci S. 2004. The low-molecular-weight glutenin subunits of wheat gluten. J. Cereal. Sci. 39: 321–339.10.1016/j.jcs.2003.12.002Search in Google Scholar

Gaut B.S., Morton B.R., McCaig B.C. & Clegg M.T. 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci. USA 93: 10274–10279.10.1073/pnas.93.19.10274Search in Google Scholar PubMed PubMed Central

Gao L.Y., Wang A.L., Li X.H., Dong K., Wang K., Appels R., Ma W.J. & Yan Y.M. 2009. Wheat quality related differential expressions of albumins and globulins revealed by twodimensional difference gel electrophoresis (2-D DIGE). J. Proteomics 73: 279–296.10.1016/j.jprot.2009.09.014Search in Google Scholar PubMed

Gupta R.B., Bakes F. & Wrigley C.W. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats: correlation studies. Cereal Chem. 68: 328–333.Search in Google Scholar

Gupta R.B., Masci S., Lafiandra D., Bariana H.S. & MacRitchie F. 1996. Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. J. Exp. Bot. 47: 1377–1385.10.1093/jxb/47.9.1377Search in Google Scholar

Harberd N.P., Bartels D. & Thompson R.D. 1985. Analysis of the gliadin multigene loci in bread wheat using nullisomictetrasomic lines. Mol. Gene. Genet. 198: 234–242.10.1007/BF00383001Search in Google Scholar

Jiang C.X., Pei Y.H., Zhang Y.Z., Li X.H., Yao D.N., Yan Y.M., Ma W.J., Hsam S.L.K. & Zeller F.J. 2008. Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi. Hereditas 145: 92–98.10.1111/j.0018-0661.2008.02035.xSearch in Google Scholar PubMed

Jin H., Zhang Y., Li G.Y., Mu P.Y., Fan Z., Xia X.C. & He Z.H. 2013. Effects of allelic variation of HMW-GS and LMW-GS on mixograph properties and Chinese noodle and steamed bread qualities in a set of Aroona near-isogenic wheat lines. J. Cereal. Sci. 57: 146–152.10.1016/j.jcs.2012.10.011Search in Google Scholar

Jiang Q.T., Ma J., Wei Y.M., Liu Y.X., Lan X.J., Dai S.F., Lu Z.X., Zhao S., Zhao Q.Z. & Zheng Y.L. 2012. Novel variants of HMW glutenin subunits from Aegilops section Sitopsis species in relation to evolution and wheat breeding. BMC. Plant. Biol. 12: 73.10.1186/1471-2229-12-73Search in Google Scholar PubMed PubMed Central

Kasarda D.D., Tao H.P., Evans P.K., Adalsteins A.E. & Yuen S.W. 1988. Sequencing of protein from a single spot of a 2-D gel pattern: N-terminal sequence of a major wheat LMW-glutenin subunit. J. Exp. Bot. 39: 899–906.10.1093/jxb/39.7.899Search in Google Scholar

Kihara H. 1954. Considerations on the evolution and distribution of Aegilops species based on the analyzer-method. Cytologia 19: 336–357.10.1508/cytologia.19.336Search in Google Scholar

Lee Y.K., Bekes F., Gupta R., Appels R. & Morell M.K. 1999. The low-molecular-weight glutenin subunit proteins of primitive wheats. II. The genes from A-genome species. Theor. Appl. Genet. 98: 119–125.10.1007/s001220051048Search in Google Scholar

Lew E.J.L., Kuzmicky D.D. & Kasarda D.D. 1992. Characterization of low-molecular-weight glutenin subunits by reversed-phase high performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal. Chem. 69: 508–515.Search in Google Scholar

Li J., Han C.X., Zhen S.M., Li X.H. & Yan Y.M. 2014. Characterization of HMW glutenin subunit B×7OE and its distribution in common wheat and related species. Plant. Genetic. Res. C 12: 191–198.10.1017/S1479262113000476Search in Google Scholar

Li J., Wang S.L., Yu Z.T., Li X.H., Guo G.F., Feng S., Ma W.J. & Yan Y.M. 2012. Optimization and development of capillary electrophoresis for separating and identifying wheat low molecular weight glutenin subunits. J. Cereal. Sci. 55: 254–256.10.1016/j.jcs.2011.12.005Search in Google Scholar

Li X.H., Wang A.L., Xiao Y.H., Yan Y.M., He Z.H., Appels R., Ma W.J., Hsam S.L.K. & Zeller F.J. 2008a. Cloning and characterization of a novel low molecular weight glutenin subunit gene at the Glu-A3 locus from wild emmer wheat (Triticum turgidum L. var. dicoccoides). Euphytica 159: 181–190.10.1007/s10681-007-9471-xSearch in Google Scholar

Li X.H., Wang K., Wang S.L., Gao L.Y., Xie X.X., Hsam S.L.K., Zeller F. J. & Yan Y.M. 2010. Molecular characterization and comparative transcriptional analysis of LMW-m-type genes from wheat (Triticum aestivum L.) and Aegilops species. Theor. Appl. Genet. 121: 845–856.10.1007/s00122-010-1354-1Search in Google Scholar PubMed

Li X.H., Ma W.J., Gao L.Y., Zhang Y.Z., Wang A.L., Ji K.M., Wang K., Appels R. & Yan Y.M. 2008b. A novel chimeric low-molecular-weight glutenin subunit gene from the wild relatives of wheat Aegilops kotschyi and Ae. juvenalis: Evolution at the Glu-3 Loci. Genetics 180: 93–101.10.1534/genetics.108.092403Search in Google Scholar PubMed PubMed Central

Liu W., Zhang Y.Z., Gao X., Wang K., Wang S.L., Zhang Y., He Z.H., Ma W.J. & Yan Y.M. 2012. Comparative proteome analysis of glutenin synthesis and accumulation in developing grains between superior and poor quality bread wheat cultivars. J. Sci. Food. Agric. 92: 106–115.10.1002/jsfa.4548Search in Google Scholar PubMed

Luo Z., Chen F.G., Feng D.S. & Xia G.M. 2005. LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding. Theor. Appl. Genet. 111: 272–280.10.1007/s00122-005-2021-9Search in Google Scholar PubMed

Lv D.W., Subburaj S., Cao M., Yan X., Li X.H., Appels R., Sun D.F., Ma W.J. & Yan Y.M. 2013. Proteome and phosphoproteome reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Mol. Cell. Proteomics 13: 632–652.10.1074/mcp.M113.030171Search in Google Scholar PubMed PubMed Central

McDonald M., Elliot L. & Sweeney P. 1994. DNA extraction from dry seeds for RAPD analyses in varietal identification studies. Seed Sci. Tech. 22: 171–176.Search in Google Scholar

Masci S., D’Ovidio R., Lafiandra D. & Kasarda D.D. 1998. Characterization of a Low-Molecular-Weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol. 118: 1147–1158.10.1104/pp.118.4.1147Search in Google Scholar PubMed PubMed Central

Masci S., D’Ovidio R., Lafiandra D. & Kasarda D.D. 2000. A 1B-coded low-molecular-weight glutenin subunit associated with quality in durum wheats shows strong similarity to a subunit present in some bread wheat cultivars. Theor. Appl. Genet. 100: 396–400.10.1007/s001220050052Search in Google Scholar

Majoul T., Bancel E., Tribod E., Hamida J.B. & Branlard G. 2004. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non-prolamins fraction. Proteomics 4: 505–513.10.1002/pmic.200300570Search in Google Scholar PubMed

Maruyama-Funatsuki W., Takata K., Nishio Z., Tabiki T., Yahata E., Kato A., Saito K., Funatsuki H., Saruyama H. & Yamauchi H. 2004. Identification of low-molecular weight glutenin subunits of wheat associated with breadmaking quality. Plant Breed. 123: 355–360.10.1111/j.1439-0523.2004.00978.xSearch in Google Scholar

Paux E., Sourdille P., Salse J., Saintenac C., Choulet F., Leroy P., Korol A., Michalak M., Kianian S., Spielmeyer W., Lagudah E., Somers D., Kilian A., Alaux M., Vautrin S., Bergčs H., Eversole K., Appels R., Safar J., Simkova H., Dolezel J., Bernard M. & Feuillet C. 2008. A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104.10.1126/science.1161847Search in Google Scholar PubMed

Payne P.I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread making quality. Annu. Rev. Plant Phys. 38: 141–153.10.1146/annurev.pp.38.060187.001041Search in Google Scholar

Pei Y.H., Wang A.L., An X.L., Li X.H., Zhang Y.Z., Huang X.Q. & Yan Y.M. 2007. Characterization and comparative analysis of three low molecular weight glutenin C-subunit genes isolated from Aegilops tauschii. Can. J. Plant. Sci. 87: 273–280.10.4141/P06-152Search in Google Scholar

Pitts E.G., Rafalski J.A. & Hedgcoth C. 1988. Nucleotide sequence and encoded amino acid sequence of a genomic gene region for a low molecular weight glutenin. Nucl. Acids. Res. 16: 11376.10.1093/nar/16.23.11376Search in Google Scholar PubMed PubMed Central

Shewry P.R. & Halford N.G. 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53: 947–958.10.1093/jexbot/53.370.947Search in Google Scholar PubMed

Shewry P.R., Miflin B.J., Lew E.J.L. & Kasarda D.D. 1983. The preparation and characterization of an aggregated gliadin fraction from wheat. J. Exp. Bot. 148: 1403–1410.10.1093/jxb/34.11.1403Search in Google Scholar

Tatham A.S., Miflin B.J. & Shewry P.R. 1985. The beta-turn conformation in wheat gluten proteins: Relationship to gluten elasticity. Cereal Chem. 62: 405–442.Search in Google Scholar

Tao H.P. & Kasarda D.D. 1989. Two-dimensional gel mapping and N-terminal sequencing of LMW-glutenin subunits. J. Exp. Bot. 40: 1015–1020.10.1093/jxb/40.9.1015Search in Google Scholar

Tabiki T., Ikeguchi S. & Ikeda T.M. 2006. Effect of high-molecular-weight and low-molecular-weight glutenin subunit alleles on common wheat flour quality. Breed. Sci. 56: 131–136.10.1270/jsbbs.56.131Search in Google Scholar

Wan Y., Liu K., Wang D. & Shewry P.R. 2000. High-molecular-weight glutenin subunits in the Cylindropyrum and Vertebrata section of the Aegilops genus and identification of subunits related to those encoded by the Dx alleles of common wheat. Theor. Appl. Genet. 101: 879–884.10.1007/s001220051556Search in Google Scholar

Wang K., An X.L., Pan L.P., Dong K., Gao L.Y., Wang S.L., Xie Z.Z., Zhang Z., Appels R., Ma W.J. & Yan Y.M. 2012. Molecular characterization of HMW-GS 1Dx3t and 1Dx4t genesfrom Aegilops tauschii and their potential value for wheat quality improvement. Hereditas 149: 41–49.10.1111/j.1601-5223.2011.02215.xSearch in Google Scholar PubMed

Wang K., Gao L.Y., Wang S.L., Zhang Y.Z., Li X.H., Zhang M.Y., Xie Z.Z., Yan Y.M., Belgard M. & Ma W.J. 2011. Phylogenetic relationship of a new class of LMW-GS genes in the M genome of Aegilops comosa. Theor. Appl. Genet. 122: 1411–1425.10.1007/s00122-011-1541-8Search in Google Scholar PubMed

Wang S.L., Yu Z.T., Cao M., Shen X.X., Li N., Li X.H., Ma W.J., Weißgerber H., Zeller F., Hsam S. & Yan Y.M. 2013. Molecular mechanisms of HMW glutenin subunits from 1Sl genome of Aegilops longissima positively affecting wheat breadmaking quality. PLoS One 8: e58947-e58947.10.1371/journal.pone.0058947Search in Google Scholar PubMed PubMed Central

Yan Y.M., Hsam S.L.K., Yu J.Z., Jiang Y. & Zeller F.J. 2003a. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica 130: 377–385.Search in Google Scholar

Yan Y.M., Yu J., Jiang Y., Hu Y., Cai M., Hsam S.L.K. & Zeller F.J. 2003b. Capillary electrophoresis separation of high molecular weight glutenin subunits in bread wheat (Triticum aestivum L.) and related species with phosphate-based buffers. Electrophoresis 24: 1429–1436.10.1002/elps.200390184Search in Google Scholar PubMed

Yen Y. & Kimber G. 1990. Genomic relationships of Triticum searsii to other S-genome diploid Triticum species. Genome 33: 369–373.10.1139/g90-056Search in Google Scholar

Zhang X.F., Jin H., Zhang Y., Liu D.C., Li G.Y., Xian X.C., He Z.H. & Zhang A.M. 2012. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC Plant Biol. 12: 1–16.10.1186/1471-2229-12-243Search in Google Scholar PubMed PubMed Central

Zhang Y.Z., Li X.H., Wang A.L., An X.L., Zhang Q., Pei Y.H., Gao L.Y., Appels R., Ma W.J. & Yan Y.M. 2008. Novel x-type HMW glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics 178: 23–33.10.1534/genetics.107.077412Search in Google Scholar PubMed PubMed Central

Zhen S.M., Han C.X., Ma C.Y., Gu A.Q., Zhang M., Shen X.X., Li X.H. & Yan Y.M. 2014. Deletion of the low-molecular-weight glutenin subunit allele Glu-A3a of wheat (Triticum aestivum L.) significantly reduces dough strength and breadmaking quality. BMC Plant Biol.14: 1–17.10.1186/s12870-014-0367-3Search in Google Scholar PubMed PubMed Central

Abbreviations:
AS-PCR

allelic specific polymerase chain reaction

LMW-GSs

low molecular weight glutenin subunit

MYA

million years ago

HMW-GSs

high molecular weight glutenin subunits

SDS-PAGE

sodium dodecyl sulfate polyacrylamide gel electrophoresis

CS

Chinese Spring

HPCE

High-performance capillary electrophoresis

HPMC

hydroxypropyl methylcellulose

2-DE

two-dimensional electrophoresis

MALDI-TOF/TOF

matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry

SNPs

single-nucleotide polymorphisms

InDels

insertions/deletions

Received: 2016-3-24
Accepted: 2016-9-28
Published Online: 2016-12-24
Published in Print: 2016-11-1

© 2016 Institute of Botany, Slovak Academy of Sciences

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/biolog-2016-0147/pdf
Scroll to top button