Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 25, 2016

The evolutionary pathway of the staphylococcal cassette chromosome element

  • Adéla Indráková , Ivana Mašlaňová EMAIL logo , Viera Kováčová , Jiří Doškař and Roman Pantůček
From the journal Biologia


The staphylococcal cassette chromosome (SCC) element can carry resistance genes to antibiotics, disinfectants, and heavy metals, contributing to the survival of strains in the environment and causing difficulties in the treatment of staphylococcal infections. Methicillin resistance in staphylococci, which is of particular clinical significance, is encoded by staphylococcal cassette chromosome mec (SCCmec). Despite the importance of the SCC element and description of multiple nucleotide sequences, the information about its origin and evolution is still scarce. Here, we present a phylogenetic analysis of SCC elements that is unique in the use of whole SCC sequences. A phylogenetic tree for a noteworthy number of 81 SCC elements based on global sequence alignment was constructed. The SCC clustering did not reflect the genetic relationships of bacteria containing the SCC elements, but was done according to type, determined by the combination of mec gene complex class and ccr gene complex type. The results emphasise the horizontal gene transfer as a means of spread of SCC elements in bacterial strains. Overall, this study contributes to the understanding of SCC emergence, evolution, and dissemination.


This work was supported by a grant from the Czech Science Foundation (GP13-05069P). Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the programme “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005), is greatly appreciated. We thank Eva Kodytková for her valuable help with this manuscript.



arginine catabolic mobile element


community-acquired methicillin-resistant Staphylococcus aureus


clonal complex


chromosome cassette recombinase


coagulase-negative staphylococci


hospital-acquired methicillin-resistant Staphylococcus aureus


horizontal gene transfer


locally collinear block


mobile genetic element


multilocus sequence typing


methicillin-resistant Staphylococcus aureus


methicillin-susceptible Staphylococcus aureus


staphylococcal cassette chromosome


staphylococcal cassette chromosome mec


sequence type


Aires de Sousa M. & de Lencastre H. 2004. Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol. Med. Microbiol. 40: 101-–111.10.1016/S0928-8244(03)00370-5Search in Google Scholar

Albrecht N., Jatzwauk L., Slickers P., Ehricht R. & Monecke S. 2011. Clonal replacement of epidemic methicillin-resistant Staphylococcus aureus strains in a German university hospital over a period of eleven years. PLoS One 6: e28189.10.1371/journal.pone.0028189Search in Google Scholar PubMed PubMed Central

Argudin M.A., Fetsch A., Tenhagen B.A., Hammerl J.A., Hertwig S., Kowall J., Rodicio M.R., Kasbohrer A., Helmuth R., Schroeter A., Mendoza M.C., Braunig J., Appel B. & Guerra B. 2010. High heterogeneity within methicillinresistant Staphylococcus aureus ST398 isolates, defined by Cfr9I macrorestriction-pulsed-field gel electrophoresis profiles and spa and SCCmec types. Appl. Environ. Microbiol. 76: 652-–658.10.1128/AEM.01721-09Search in Google Scholar PubMed PubMed Central

Armand-Lefevre L., Ruimy R. & Andremont A. 2005. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg. Infect. Dis. 11: 711-–714.10.3201/eid1105.040866Search in Google Scholar PubMed PubMed Central

Baba T., Kuwahara-Arai K., Uchiyama I., Takeuchi F., Ito T. & Hiramatsu K. 2009. Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, reflecting the ancestral genome of the human-pathogenic staphylococci. J. Bacteriol. 191: 1180-–1190.10.1128/JB.01058-08Search in Google Scholar PubMed PubMed Central

Barbier F., Ruppe E., Hernandez D., Lebeaux D., Francois P., Felix B., Desprez A., Maiga A., Woerther P.L., Gaillard K., Jeanrot C., Wolff M., Schrenzel J., Andremont A. & Ruimy R. 2010. Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillinresistant Staphylococcus aureus. J. Infect. Dis. 202: 270-–281.10.1086/653483Search in Google Scholar PubMed

Bjorkeng E.K., Tessema G.T., Lundblad E.W., Butaye P., Willems R., Sollid J.E., Sundsfjord A. & Hegstad K. 2010. CcrABEnt serine recombinase genes are widely distributed in the Enterococcus faecium and Enterococcus casseliflavus species groups and are expressed in E. faecium. Microbiology 156: 3624-–3634.10.1099/mic.0.041491-0Search in Google Scholar PubMed PubMed Central

Black C.C., Solyman S.M., Eberlein L.C., Bemis D.A., Woron A. M. & Kania S.A. 2009. Identification of a predominant multilocus sequence type, pulsed-field gel electrophoresis cluster, and novel staphylococcal chromosomal cassette in clinical isolates of mecA-containing, methicillin-resistant Staphylococcus pseudintermedius. Vet. Microbiol. 139: 333-–338.10.1016/j.vetmic.2009.06.029Search in Google Scholar PubMed

Bouchami O., Ben Hassen A., de Lencastre H. & Miragaia M. 2011. Molecular epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low clonality and reservoirs of SCCmec structural elements. PLoS One 6: e21940.10.1371/journal.pone.0021940Search in Google Scholar PubMed PubMed Central

Bouchami O., Ben Hassen A., de Lencastre H. & Miragaia M. 2012. High prevalence of mec complex C and ccrC is independent of SCCmec type V in Staphylococcus haemolyticus. Eur. J. Clin. Microbiol. Infect. Dis. 31: 605-–614.10.1007/s10096-011-1354-3Search in Google Scholar PubMed

Boundy S., Safo M.K., Wang L., Musayev F.N., O’Farrell H.C., Rife J.P. & Archer G.L. 2013. Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the gene containing the staphylococcal chromosome cassette mec (SCCmec) insertion site. J. Biol. Chem. 288: 132-–140.10.1074/jbc.M112.385138Search in Google Scholar

Chlebowicz M.A., Mašlaňová I., Kuntová L., Grundmann H., Pantůĉek R., Doskař J., van Dijl J.M. & Buist G. 2014. The staphylococcal cassette chromosome mec type V from Staphylococcus aureus ST398 is packaged into bacteriophage capsids. Int. J. Med. Microbiol. 304: 764-–774.10.1016/j.ijmm.2014.05.010Search in Google Scholar

Chlebowicz M.A., Nganou K., Kozytska S., Arends J.P., Engelmann S., Grundmann H., Ohlsen K., van Dijl J.M. & Buist G. 2010. Recombination between ccrC genes in a type V (5C2&5) staphylococcal cassette chromosome mec (SCCmec) of Staphylococcus aureus ST398 leads to conversion from methicillin resistance to methicillin susceptibility in vivo. Antimicrob. Agents Chemother. 54: 783-–791.10.1128/AAC.00696-09Search in Google Scholar

Cuny C., Layer F., Strommenger B. & Witte W. 2011. Rareoccurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS One 6: e24360.10.1371/journal.pone.0024360Search in Google Scholar

Darling A.E., Mau B. & Perna N.T. 2010. Progressive Mauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5: e11147.10.1371/journal.pone.0011147Search in Google Scholar

Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModel-Test 2: more models, new heuristics and parallel computing. Nat. Methods 9: 772.10.1038/nmeth.2109Search in Google Scholar

Daum R.S., Ito T., Hiramatsu K., Hussain F., Mongkolrattanothai K., Jamklang M. & Boyle-Vavra S. 2002. A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds. J. Infect. Dis. 186: 1344-–1347.10.1086/344326Search in Google Scholar

Lopes M.D.F.S., Ribeiro T., Abrantes M., Marques J.J.F., Tenreiro R. & Crespo M. T. 2005. Antimicrobial resistance profiles of dairy and clinical isolates and type strains of enterococci. Int. J. Food Microbiol. 103: 191-–198.10.1016/j.ijfoodmicro.2004.12.025Search in Google Scholar

DeLeo F.R. & Chambers H.F. 2009. Reemergence of antibioticresistant Staphylococcus aureus in the genomics era. J. Clin. Invest. 119: 2464-–2474.10.1172/JCI38226Search in Google Scholar

DeLeo F.R., Otto M., Kreiswirth B.N. & Chambers H.F. 2010. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375: 1557-–1568.10.1016/S0140-6736(09)61999-1Search in Google Scholar

Descloux S., Rossano A. & Perreten V. 2008. Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius. J. Clin. Microbiol. 46: 1818-–1823.10.1128/JCM.02255-07Search in Google Scholar

Diep B.A., Gill S.R., Chang R.F., Phan T.H., Chen J.H., Davidson M.G., Lin F., Lin J., Carleton H.A., Mongodin E.F., Sensabaugh G.F. & Perdreau-Remington F. 2006. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367: 731-–739.10.1016/S0140-6736(06)68231-7Search in Google Scholar

Donnio P.Y., Fevrier F., Bifani P., Dehem M., Kervegant C., Wilhelm N., Gautier-Lerestif A.L., Lafforgue N., Cormier M., Le Coustumier A. & MR-MSSA Study Group of the College de Bacteriologie-Virologie-Hygeine des Hopitaux de France. 2007. Molecular and epidemiological evidence for spread of multiresistant methicillin-susceptible Staphylococcus aureus strains in hospitals. Antimicrob. Agents Chemother. 51: 4342-–4350.10.1128/AAC.01414-06Search in Google Scholar

Ender M., McCallum N., Adhikari R. & Berger-Bachi B. 2004. Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob. Agents Chemother. 48: 2295-–2297.10.1128/AAC.48.6.2295-2297.2004Search in Google Scholar

Enright M.C., Day N.P., Davies C.E., Peacock S.J. & Spratt B. G. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38: 1008-–1015.10.1128/JCM.38.3.1008-1015.2000Search in Google Scholar

Enright M.C., Robinson D.A., Randle G., Feil E.J., Grundmann H. & Spratt B.G. 2002. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 99: 7687-–7692.10.1073/pnas.122108599Search in Google Scholar

Fluit A.C., Carpaij N., Majoor E.A., Bonten M.J. & Willems R. J. 2013. Shared reservoir of ccrB gene sequences between coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 68: 1707–1713.10.1093/jac/dkt121Search in Google Scholar

Garcia-Alvarez L., Holden M.T.G., Lindsay H., Webb C.R., Brown D.F.J., Curran M.D., Walpole E., Brooks K., Pickard D.J., Teale C., Parkhill J., Bentley S.D., Edwards G.F., Girvan E.K., Kearns A.M., Pichon B., Hill R.L.R., Larsen A.R., Skov R.L., Peacock S.J., Maskell D.J. & Holmes M.A. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11: 595–603.10.1016/S1473-3099(11)70126-8Search in Google Scholar

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307-–321.10.1093/sysbio/syq010Search in Google Scholar PubMed

Guindon S. & Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-–704.10.1080/10635150390235520Search in Google Scholar PubMed

Hanssen A.M., Kjeldsen G. & Sollid J.U.E. 2003. Local variants of staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: Evidence of horizontal gene transfer? Antimicrob. Agents Chemother. 48: 285-–296.10.1128/AAC.48.1.285-296.2004Search in Google Scholar PubMed PubMed Central

Harrison E.M., Paterson G.K., Holden M.T., Ba X., Rolo J., Morgan F.J., Pichon B., Kearns A., Zadoks R.N., Peacock S.J., Parkhill J. & Holmes M.A. 2014. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. J. Antimicrob. Chemother. 69: 911-–918.10.1093/jac/dkt452Search in Google Scholar PubMed PubMed Central

Harrison E.M., Paterson G.K., Holden M.T., Morgan F.J., Larsen A.R., Petersen A., Leroy S., De Vliegher S., Perreten V., Fox L.K., Lam T.J., Sampimon O.C., Zadoks R.N., Peacock S. J., Parkhill J. & Holmes M.A. 2013. A Staphylococcus xylosus isolate with a new mecC allotype. Antimicrob. Agents Chemother. 57: 1524-–1528.10.1128/AAC.01882-12Search in Google Scholar PubMed PubMed Central

Hiramatsu K., Ito T., Tsubakishita S., Sasaki T., Takeuchi F., Morimoto Y., Katayama Y., Matsuo M., Kuwahara-Arai K., Hishinuma T. & Baba T. 2013. Genomic basis for methicillin resistance in Staphylococcus aureus. Infect. Chemother. 45: 117-–136.10.3947/ic.2013.45.2.117Search in Google Scholar PubMed PubMed Central

Ito T., Katayama Y., Asada K., Mori N., Tsutsumimoto K., Tiensasitorn C. & Hiramatsu K. 2001. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45: 1323–1336.10.1128/AAC.45.5.1323-1336.2001Search in Google Scholar PubMed PubMed Central

Ito T., Ma X.X., Takeuchi F., Okuma K., Yuzawa H. & Hiramatsu K. 2004. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob. Agents Chemother. 48: 2637-–2651.10.1128/AAC.48.7.2637-2651.2004Search in Google Scholar PubMed PubMed Central

IWG-SCC International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements. 2009. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob. Agents Chemother. 53: 4961-–4967.10.1128/AAC.00579-09Search in Google Scholar PubMed PubMed Central

Jevons M.P., Rolinson G.N. & Knox R. 1961. Celbenin-resistant staphylococci. Brit. Med. J. 1: 124-–125.10.1136/bmj.1.5219.124-aSearch in Google Scholar

Jolley K.A. & Maiden M.C.J. 2010. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11: 595.10.1186/1471-2105-11-595Search in Google Scholar PubMed PubMed Central

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772-–780.10.1093/molbev/mst010Search in Google Scholar PubMed PubMed Central

Kinnevey P.M., Shore A.C., Brennan G.I., Sullivan D.J., Ehricht R., Monecke S. & Coleman D.C. 2014. Extensive genetic diversity identified among sporadic methicillin-resistant Staphylococcus aureus isolates recovered in Irish hospitals between 2000 and 2012. Antimicrob. Agents Chemother. 58: 1907-–1917.10.1128/AAC.02653-13Search in Google Scholar PubMed PubMed Central

Knight G.M., Budd E.L. & Lindsay J.A. 2013. Large mobile genetic elements carrying resistance genes that do not confer a fitness burden in healthcare-associated meticillin-resistant Staphylococcus aureus. Microbiology 159: 1661-–1672.10.1099/mic.0.068551-0Search in Google Scholar PubMed

Knight G.M., Budd E.L., Whitney L., Thornley A., Al-Ghusein H., Planche T. & Lindsay J.A. 2012. Shift in dominant hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) clones over time. J. Antimicrob. Chemother. 67: 2514-–2522.10.1093/jac/dks245Search in Google Scholar PubMed

Kuroda M., Yamashita A., Hirakawa H., Kumano M., Morikawa K., Higashide M., Maruyama A., Inose Y., Matoba K., Toh H., Kuhara S., Hattori M. & Ohta T. 2005. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc. Natl. Acad. Sci. USA 102: 13272-–13277.10.1073/pnas.0502950102Search in Google Scholar PubMed PubMed Central

Lee S.M., Ender M., Adhikari R., Smith J.M., Berger-Bachi B. & Cook G.M. 2007. Fitness cost of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus by way of continuous culture. Antimicrob. Agents Chemother. 51: 1497-–1499.10.1128/AAC.01239-06Search in Google Scholar PubMed PubMed Central

Lina G., Durand G., Berchich C., Short B., Meugnier H., Vandenesch F., Etienne J. & Enright M.C. 2006. Staphylococcal chromosome cassette evolution in Staphylococcus aureus inferred from ccr gene complex sequence typing analysis. Clin. Microbiol. Infect. 12: 1175-–1184.10.1111/j.1469-0691.2006.01548.xSearch in Google Scholar PubMed

Maŝlaňová I., Doŝkaf J., Varga M., Kuntová L., Mužik J., Malúŝkovxá D., Růžičková V. & Pantůcek R. 2013. Bacte-riophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ. Microbiol. Rep. 5: 66-–73.10.1111/j.1758-2229.2012.00378.xSearch in Google Scholar PubMed

Okuma K., Iwakawa K., Turnidge J.D., Grubb W.B., Bell J.M., O’Brien F G., Coombs G.W., Pearman J.W., Tenover F.C., Kapi M., Tiensasitorn C., Ito T. & Hiramatsu K. 2002. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol. 40: 4289–4294.10.1128/JCM.40.11.4289-4294.2002Search in Google Scholar PubMed PubMed Central

Oliveira D.C. & de Lencastre H. 2002. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 46: 2155-–2161.10.1128/AAC.46.7.2155-2161.2002Search in Google Scholar PubMed PubMed Central

Otto M. 2013. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. Bioessays 35: 4-–11.10.1002/bies.201200112Search in Google Scholar PubMed PubMed Central

Park Y.K., Paik Y.H., Yoon J.W., Fox L.K., Hwang S.Y. & Park Y.H. 2013. Dissimilarity of ccrAB gene sequences between methicillin-resistant Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus among bovine isolates in Korea. J. Vet. Sci. 14: 299-–305.10.4142/jvs.2013.14.3.299Search in Google Scholar PubMed PubMed Central

Perreten V., Chanchaithong P., Prapasarakul N., Rossano A., Blum S.E., Elad D. & Schwendener S. 2013. Novel pseudo-staphylococcal cassette chromosome mec element (psiSCCmec57395) in methicillin-resistant Staphylococcus pseudintermedius CC45. Antimicrob. Agents Chemother. 57: 5509-–5515.10.1128/AAC.00738-13Search in Google Scholar PubMed PubMed Central

Price L.B., Stegger M., Hasman H., Aziz M., Larsen J., Andersen P.S., Pearson T., Waters A.E., Foster J.T., Schupp J., Gillece J., Driebe E., Liu C.M., Springer B., Zdovc I., Battisti A., Franco A., Zmudzki J., Schwarz S., Butaye P., Jouy E., Pomba C., Porrero M.C., Ruimy R., Smith T.C., Robinson D.A., Weese J.S., Arriola C.S., Yu F., Laurent F., Keim P., Skov R. & Aarestrup F.M. 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3: e00305-11.10.1128/mBio.00305-11Search in Google Scholar PubMed PubMed Central

Queck S.Y., Khan B.A., Wang R., Bach T.H., Kretschmer D., Chen L., Kreiswirth B.N., Peschel A., DeLeo F.R. & Otto M. 2009. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog. 5: e1000533.10.1371/journal.ppat.1000533Search in Google Scholar PubMed PubMed Central

Robinson D.A. & Enright M.C. 2003. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47: 3926-–3934.10.1128/AAC.47.12.3926-3934.2003Search in Google Scholar PubMed PubMed Central

Rolo J., de Lencastre H. & Miragaia M. 2012. Strategies of adaptation of Staphylococcus epidermidis to hospital and community: amplification and diversification of SCCmec. J. Antimicrob. Chemother. 67: 1333-–1341.10.1093/jac/dks068Search in Google Scholar PubMed

Rolo J., de Lencastre H. & Miragaia M. 2014. High frequency and diversity of cassette chromosome recombinases (ccr) in methicillin-susceptible Staphylococcus sciuri. J. Antimicrob. Chemother. 69: 1461-–1469.10.1093/jac/dku028Search in Google Scholar PubMed

Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-–1574.10.1093/bioinformatics/btg180Search in Google Scholar PubMed

Scharn C.R., Tenover F.C. & Goering R.V. 2013. Transduction of staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 57: 5233-–5238.10.1128/AAC.01058-13Search in Google Scholar PubMed PubMed Central

Shore A.C. & Coleman D.C. 2013. Staphylococcal cassette chromosome mec: recent advances and new insights. Int. J. Med. Microbiol. 303: 350-–359.10.1016/j.ijmm.2013.02.002Search in Google Scholar PubMed

Stamatakis A., Blagojevic F., Nikolopoulos D.S. & Antonopoulos C. D. 2007. Exploring new search algorithms and hardware for phylogenetics: RAxML meets the IBM cell. J. VLSI Signal Processing 48: 271-–286.10.1007/s11265-007-0067-4Search in Google Scholar

Tsubakishita S., Kuwahara-Arai K., Baba T. & Hiramatsu K. 2010a. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob. Agents Chemother. 54: 1469-–1475.10.1128/AAC.00575-09Search in Google Scholar

Tsubakishita S., Kuwahara-Arai K., Sasaki T. & Hiramatsu K. 2010b. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob. Agents Chemother. 54: 4352-–4359.10.1128/AAC.00356-10Search in Google Scholar

Udo E.E., Pearman J.W. & Grubb W.B. 1993. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J. Hosp. Infect. 25: 97-–108.10.1016/0195-6701(93)90100-ESearch in Google Scholar

Urushibara N., Paul S.K., Hossain M.A., Kawaguchiya M. & Kobayashi N. 2011. Analysis of staphylococcal cassette chromosome mec in Staphylococcus haemolyticus and Staphylococcus sciuri: identification of a novel ccr gene complex with a newly identified ccrA allotype (ccrA7). Microb. Drug Resist. 17: 291-–297.10.1089/mdr.2010.0144Search in Google Scholar PubMed

Vanderhaeghen W., Vandendriessche S., Crombe F., Dispas M., Denis O., Hermans K., Haesebrouck F. & Butaye P. 2012. Species and staphylococcal cassette chromosome mec (SCCmec) diversity among methicillin-resistant non Staphylococcus aureus staphylococci isolated from pigs. Vet. Microbiol. 158: 123-–128.10.1016/j.vetmic.2012.01.020Search in Google Scholar PubMed

Verkade E. & Kluytmans J. 2014. Livestock-associated Staphylococcus aureus CC398: animal reservoirs and human infections. Infect. Genet. Evol. 21: 523-–530.10.1016/j.meegid.2013.02.013Search in Google Scholar PubMed

Voss A., Loeffen F., Bakker J., Klaassen C. & Wulf M. 2005. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg. Infect. Dis. 11: 1965-–1966.10.3201/eid1112.050428Search in Google Scholar PubMed PubMed Central

Wisplinghoff H., Rosato A.E., Enright M.C., Noto M., Craig W. & Archer G.L. 2003. Related clones containing SCCmec type IV predominate among clinically significant Staphylococcus epidermidis isolates. Antimicrob. Agents Chemother. 47: 3574-–3579.10.1128/AAC.47.11.3574-3579.2003Search in Google Scholar PubMed PubMed Central

Wu Z., Li F., Liu D., Xue H. & Zhao X. 2015. Novel type XII staphylococcal cassette chromosome mec harboring a new cassette chromosome recombinase, CcrC2. Antimicrob. Agents Chemother. 59: 7597-–7601.10.1128/AAC.01692-15Search in Google Scholar PubMed PubMed Central

Zong Z., Peng C. & Lu X. 2011. Diversity of SCCmec elements in methicillin-resistant coagulase-negative staphylococci clinical isolates. PLoS One 6: e20191.10.1371/journal.pone.0020191Search in Google Scholar PubMed PubMed Central

Received: 2016-8-5
Accepted: 2016-11-19
Published Online: 2016-12-25
Published in Print: 2016-11-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Downloaded on 5.6.2023 from
Scroll to top button