Abstract
The marbled craynsn (Procambarus fallax f. virginalis) has become one of the potentially most dangerous nonindigenous crayfish species spreading in European countries and elsewhere. This taxon reproduces parthenogenetically and recently has been verified as a vector of the crayfish plague pathogen. Here, we report on two established populations of marbled crayfish in the Czech Republic. The marbled crayfish was observed during autumn 2015 in an urban pond connected by sewer piping with the Rokytka brook near its mouth to the Vltava River in Prague. Subsequently, three adult females, two of them having well-developed glair glands and oocytes, were captured in this pond during spring 2016, suggesting successful overwintering of the local population. Furthermore, four adult females were captured in an artificial pond at the Radovesická lignite spoil heap in the vicinity to the industrial conurbation of Bílina in summer 2016; one of them carried eggs. We tested these for the presence of the crayfish plague pathogen Aphanomyces astaci, with negative results. The introduction pathway for both populations is most likely a release from private aquaria, as these sites are popular for recreation activities. Our findings substantiate previous predictions that conurbations are likely to be the primary areas for marbled crayfish introductions.
Acknowledgements
The authors thank Marie Lupoměská (Town District Prague 9) for permission to survey the urban pond, Jakub Friedl for reporting on the presence of crayfish in the Přátelství Park, to Filip Tichánek for various information on the Radovesická spoil heap, and to Zuzana Musilová for help with sampling at the Radovesická spoil heap. Denis Copilaş-Ciocianu, Nuria Viñuela Rodríguez and Agata Mrugała helped with laboratory analyses. The study was financially supported by the project “CIGA” (No. 20152007), the Czech Science Foundation (P504/12/2525), the Ministry of Education, Youth and Sports of the Czech Republic – projects CENAKVA (No. CZ.1.05/2.1.00/01.0024) and CENAKVA II (No. LO1205 under the NPU I program), and the University of South Bohemia (GAJU 158/2016/P). English was proofread by Gale A. Kirking at English Editorial Services.
References
Aquiloni L., Brusconi S., Cecchinelli E., Tricarico E., Mazza G., Paglianti A. & Gherardi F. 2010. Biological control of invasive populations of crayfish: the European eel (Anguilla anguilla) as a predator of Procambarus clarkii. Biol. Invasions 12 (11): 3817–3824. 10.1007/s10530-010-9774-zSearch in Google Scholar
Bohman P., Edsman L., Martin P. & Scholtz G. 2013. The first Marmorkrebs (Decapoda: Astacida: Cambaridae) in Scandinavia. Bioinvasions Rec. 2 (3): 227–232. 10.3391/bir. 2013.2.3.09Search in Google Scholar
Chucholl C. 2013. Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biol. Invasions 15 (1): 125–141. 10.1007/s10530-012-0273-2Search in Google Scholar
Chucholl C. 2014. Predicting the risk of introduction and establishment of an exotic aquarium animal in Europe: insights from one decade of Marmorkrebs (Crustacea, Astacida, Cambaridae) releases. Manag. Biol. Invasions 5 (4): 309–318. 10.3391/mbi.2014.5.4.01Search in Google Scholar
Chucholl C., Morawetz K. & Groβ H. 2012. The clones are comingstrong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquat. Invasions 7 (4): 511–519. 10.3391/ai.2012.7.4.008Search in Google Scholar
Chucholl C. & Pfeiffer M. 2010. First evidence for an established Marmorkrebs (Decapoda, Astacida, Cambaridae) population in Southwestern Germany, in syntopic occurrence with Orconectes limosus (Rafinesque, 1817). Aquat. Invasions 5 (4): 405–412. 10.3391/ai.2010.5.4.10Search in Google Scholar
Chucholl C. & Wendler F. 2016. Positive selection of beautiful invaders: long-term persistence and bio-invasion risk of freshwater crayfish in the pet trade. Biol. Invasions. 10.1007/s10530-016-1272-5Search in Google Scholar
Duggan I.C. 2010. The freshwater aquarium trade as a vector for incidental invertebrate fauna. Biol. Invasions 12 (11): 3757–3770. 10.1007/s10530-010-9768-xSearch in Google Scholar
Duggan I.C., Rixon C.A. & MacIsaac H.J. 2006. Popularity and propagule pressure: determinants of introduction and establishment of aquarium fish. Biol. Invasions 8 (2): 377–382. 10.1007/s10530-004-2310-2Search in Google Scholar
Faulkes Z. 2010. The spread of the parthenogenetic marbled crayfish, Marmorkrebs (Procambarus sp.), in the North American pet trade. Aquat. Invasions 5 (4): 447–450. 10.3391/ai.2010.5.4.16Search in Google Scholar
Faulkes Z. 2015. Marmorkrebs (Procambarus fallax f. virginalis) are the most popular crayfish in the North American pet trade. Knowl. Manag. Aquat. Ecosyst. 416: 20. 10.1051/kmae/2015016Search in Google Scholar
Filipová L., Grandjean F., Chucholl C., Soes D. & Petrusek A. 2011. Identification of exotic North American crayfish in Europe by DNA barcoding. Knowl. Manag. Aquat. Ecosyst. 401:11.10.1051/kmae/2011025Search in Google Scholar
Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R.1994. DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3 (5): 294–299. PMID: 7881515Search in Google Scholar
Gherardi F., Aquiloni L., Diéguez-Uribeondo J. & Tricarico E. 2011. Managing invasive crayfish: is there a hope? Aquat. Sci. 73 (2): 185–200. 10.1007/s00027-011-0181-zSearch in Google Scholar
Harabiš F., Tichanek F. & Tropek R. 2013. Dragonflies of freshwater pools in lignite spoil heaps: restoration management, habitat structure and conservation value. Ecol. Eng. 55: 51–61. 10.1016/j.ecoleng.2013.02.007Search in Google Scholar
Holdich D.M., Reynolds J.D., Souty-Grosset C. & Sibley P.J. 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 394–395:11. 10.1051/kmae/2009025Search in Google Scholar
Janský V. & Mutkovič A. 2010. Rak Procambarus sp. (Crustacea: Decapoda: Cambaridae) – Prvý nález na Slovensku. Acta Rer. Natur. Mus. Nat. Slov. 56: 64–67.Search in Google Scholar
Kalous L., Patoka J. & Kopecký O. 2015. European hub for invaders: Risk assessment of freshwater ornamental fish exported from the Czech Republic. Acta Ichthyol. Piscat. 45 (3): 239–245. 10.3750/AIP2015.45.3.03Search in Google Scholar
Keller N., Pfeiffer M., Roessink I., Schulz R. & Schrimpf A. 2014. First evidence of crayfish plague agent in populations of the marbled crayfish (Procambarus fallax form a virginalis). Knowl. Managt. Aquatic Ecosyst. 414:15. 10.1051/ kmae/2014032Search in Google Scholar
Kotovska G., Khrystenko D., Patoka J. & Kouba A. 2016. East European crayfish stocks at risk: arrival of non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 417: 37. 10.1051/kmae/2016024Search in Google Scholar
Kouba A., Buřič M. & Petrusek A. 2015. Crayfish species in Europe, Chapter 5, pp. 81–163. In: Kozák P., Ďuriš Z., Petrusek A., Buřič M., Horká I., Kouba A., Kozubíková E., & Policar T., Crayfish Biology and Culture, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodńany, 456 pp. ISBN: 978-80-7514-014-2Search in Google Scholar
Kouba A., Petrusek A. & Kozák P. 2014. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Manag. Aquat. Ecosyst. 413: 05. 10.1051/kmae/2014007Search in Google Scholar
Lipták B., Mrugała A., Pekárik L., Mutkovič A., Gruåa D., Petrusek A. & Kouba A. 2016. Expansion of the marbled crayfish in Slovakia: beginning of an invasion in the Danube catchment? J. Limnol.75 (2): 305–312. 10.4081/ jlimnol.2016.1313Search in Google Scholar
Lőkkös A., Muller T., Kovács K., Várkonyi L., Specziár A. & Martin P. 2016. The alien, parthenogenetic marbled crayfish (Decapoda: Cambaridae) is entering Kis-Balaton (Hungary), one of Europe’s most important wetland biotopes. Knowl. Manag. Aquat. Ecosyst. 417: 16. 1051/kmae/2016003Search in Google Scholar
Magalhães A.L.B. & Andrade R.F. 2014. Has the import ban on non-native red swamp crayfish (Crustacea: Cambaridae) been effective in Brazil? Neotrop. Biol. Conserv. 10 (1): 48–52. 10.4013/nbc.2015.101.07Search in Google Scholar
Malone C.R. 1965. Dispersal of plankton: rate of food passage in mallard ducks. J. Wildl. Manage. 29 (3): 529–533. 10.2307/3798052Search in Google Scholar
Martin P., Dorn N.J., Kawai T., van der Heiden C. & Scholtz G. 2010.The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen,1870). Contrib. Zool.79 (3): 107–118.10.1163/18759866-07903003Search in Google Scholar
Martin P., Thonagel S. & Scholtz G. 2016 The parthenogenetic Marmorkrebs (Malacostraca: Decapoda: Cambaridae) is a triploid organism. J. Zool. Syst. Evol. Res. 54 (1): 13–21. 10.1111/jzs.12114Search in Google Scholar
Martinez-Murcia A., Saavedra M., Mota V., Maier T., Stackebrandt E. &, Cousin S. 2008. Aeromonas aquariorum sp. nov., isolated from aquaria of ornamental fish. Int. J. Syst. Evol. Microbiol 58:1169–1175. 10.1099/ijs.0.65352-0Search in Google Scholar
Mrugała A., Kozubíková-Balcarová E., Chucholl C., Resino S.C., Viljamaa-Dirks S., Vukić J. & Petrusek A. 2015. Trade of ornamental crayfish in Europe as a possible introduction pathway for important crustacean diseases: crayfish plague and white spot syndrome. Biol. Invasions 17 (5): 1313–1326. 10.1007/s10530-014-0795-xSearch in Google Scholar
Nonnis Marzano F., Scalici M., Chiesa S., Gherardi F., Piccinini A. & Gibertini G. 2009. The first record of the marbled crayfish adds further threats to fresh waters in Italy. Aquat. Invasions 4 (2): 401–404. 10.3391/ai.2009.4.2.19Search in Google Scholar
Novitsky R.A. & Son M.O. 2016. The first records of Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] (Crustacea, Decapoda, Cambaridae) in Ukraine. Ecol. Montenegrina 5: 44–46.10.37828/em.2016.5.8Search in Google Scholar
Padilla D.K. & Williams S.L. 2004. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front. Ecol. Environ. 2 (3): 131–138. 10.1890/1540-9295(2004)002[0131:BBWAAO]2.0.CO;2Search in Google Scholar
Patoka J., Bláha M., Devetter M., Rylková K., Cadková Z. & Kalous L. 2015a. Aquarium hitchhikers: attached commensals imported with freshwater shrimps via the pet trade. Biol. Invasions 18 (2): 457–461. 10.1007/s10530-015-1018-9Search in Google Scholar
Patoka, J., Bláha, M., Kalous, L., Vrabec, V., Buřič, M., & Kouba, A. 2016. Potential pest transfer mediated by international ornamental plant trade. Sci. Rep. 6: 25896. 10.1038/srep25896Search in Google Scholar PubMed PubMed Central
Patoka J., Kalous L. & Kopecký O. 2014a. Risk assessment of the crayfish pet trade based on data from the Czech Republic. Biol. Invasions 16 (12): 2489–2494. 10.1007/s10530-014-0682-5Search in Google Scholar
Patoka J., Kalous L. & Kopecký O. 2015b. Imports of ornamental crayfish: the first decade from the Czech Republic’s perspective. Knowl. Manag. Aquat. Ecosyst. 416: 04. 10.1051/kmae/2014040Search in Google Scholar
Patoka J., Petrtýl M. & Kalous L. 2014b. Garden ponds as potential introduction pathway of ornamental crayfish. Knowl. Manag. Aquat. Ecosyst. 414:13. 10.1051/kmae/ 2014019Search in Google Scholar
Peay S. 2009. Invasive non-indigenous crayfish species in Europe: recommendations on managing them. Knowl. Manag. Aquat. Ecosyst. 394–395: 03. 10.1051/kmae/2010009Search in Google Scholar
Perdikaris C., Kozák P., Kouba A., Konstantinidis E. & Paschos I. 2012. Socio-economic drivers and non-indigenous freshwater crayfish species in Europe. Knowl. Manag. Aquat. Ecosyst. 404: 01.10.1051/kmae/2011077Search in Google Scholar
Reynolds J.D. 2002. Growth and reproduction, Part 1: General Biology, Chapter 4, pp. 152–191. In: Holdich D.M. (ed.), Biology of Freshwater Crayfish, Blackwell Science, Oxford, 720 pp. ISBN: 978-0-632-05431-2Search in Google Scholar
Samardžić M., Lucić A., Maguire I. & Hudina S. 2014. The first record of the marbled crayfish (Procambarus fallax (Hagen, 1870) f. virginalis) in Croatia. Crayfish News 36: 4.Search in Google Scholar
Scholtz G., Braband A., Tolley L., Reimann A., Mittmann B., Lukhaup C., Steuerwald F. & Vogt G. 2003. Parthenogenesis in an outsider crayfish. Nature 421: 806. 10.1038/421806aSearch in Google Scholar PubMed
Seitz R., Vilpoux K., Hopp U., Harzsch S. & Maier, G. 2005. Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J. Exp. Zool. Part A 303A (5): 393–405. 10.1002/jez.a.143Search in Google Scholar PubMed
Shen H., Braband A. & Scholtz G. 2013. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol. Phylogenet. Evol.66 (3): 776–789. 10.1016/j.ympev.2012.11.002Search in Google Scholar PubMed
Soes D.M. & Koese B. 2010. Invasive crayfish in the Netherlands: a preliminary risk analysis. Interim report. EIS-Nederland and Bureau Waardenburg, Waardenburg, The Netherlands, 69 pp. http://www.repository.naturalis.nl/document/200127 (accessed 28.4.2015)Search in Google Scholar
Souty-Grosset C., Anastácio P.M., Aquiloni L., Banha F., Choquer J., Chucholl C. & Tricarico E. 2016. The red swamp crayfish Procambarus clarkii in Europe: impacts on aquatic ecosystems and human well-being. Limnologica 58: 78–93. 10.1016/j.limno.2016.03.003Search in Google Scholar
Svoboda J., Strand D.A., Vrålstad T., Grandjean F., Edsman L., Kozák P., Kouba A., Fristad R.F., Bahadir Koca S. & Petrusek A. 2014. The crayfish plague pathogen can infect freshwater-inhabiting crabs. Freshwater Biol.59 (5): 918–929. 10.1111/fwb.12315Search in Google Scholar
Syväranta J., Cucherousset J., Kopp D., Crivelli A., Céréghino R. & Santoul F. 2010. Dietary breadth and trophic position of introduced European catfish Silurus glanis in the Tarn River (Garonne River basin), southwest France. Aquat. Biol. 8:137–144. 10.3354/ab00220Search in Google Scholar
Taylor C.A., Schuster G.A., Cooper J.E., DiStefano R.J., Eversole A.G., Hamr P., Hobbs III H.H., Robinson H.W., Skelton C.E. & Thoma R.F. 2007. A reassessment of the conservation status of crayfishes of the United States and Canada after 10+ years of increased awareness. Fisheries 32 (8): 372–389. 10.1577/1548-8446(2007)32[372:AROTCS]2.0.CO;2Search in Google Scholar
Tichanek F. & Tropek R. 2015. Conservation value of post-mining headwaters: drainage channels at a lignite spoil heap harbour threatened stream dragonflies. J. Insect Conserv. 19 (5): 975–985. 10.1007/s10841-015-9814-1Search in Google Scholar
Tichanek F. & Tropek R. 2016. The endangered damselfly Coenagrion ornatum in post-mining streams: population size, habitat requirements and restoration. J. Insect Conserv. 20 (4): 701–710 10.1007/s10841-016-9902-xSearch in Google Scholar
Veselý L., Buřič M. & Kouba A. 2015. Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures? Sci. Rep. 5:16340. 10.1038/srep16340Search in Google Scholar
Vogt G., Tolley L. & Scholtz G. 2004. Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J. Morphol. 261 (3): 286–311. 10.1002/jmor.10250Search in Google Scholar
Vojar J., Doležalová J., Solský M., Smolová D., Kopecký O., Kadlec T. & Knapp M. 2016. Spontaneous succession on spoil banks supports amphibian diversity and abundance. Ecol. Eng. 90: 278–284. 10.1016/j.ecoleng.2016.01.028Search in Google Scholar
Vojkovská R., Horká I., Tricarico E. & Ďuris Z. 2014. New record of the parthenogenetic marbled crayfish Procambarus fallax f. virginalis from Italy. Crustaceana 87 (11–12): 1386–1392. 10.1163/15685403-00003365Search in Google Scholar
Vrålstad T., Knutsen A.K., Tengs T., & Holst-Jensen A. 2009. A quantitative TaqMan® MGB real-time polymerase chain reaction based assay for detection of the causative agent of crayfish plague Aphanomyces astaci. Vet. Microbiol. 137 (1–2):146–155. 10.1016/j.vetmic.2008.12.022Search in Google Scholar PubMed
Weiperth A., Csányi B., Gál B., György Á.I., Szalóky Z., Szekeres J., Tóth B. & Puky M. 2015. Egzotikus rák-, hal-és kétéltűfajok a Budapest környéki víztestekben [Exotic crayfish, fish and amphibian species in various water bodies in the region of Budapest]. Pisces Hungarici 9: 65–70.Search in Google Scholar
© 2016 Institute of Zoology, Slovak Academy of Sciences