Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 30, 2017

Haplotype diversity in common pipistrelle’s mass hibernacula from central Europe

  • Gréta Nusová , Martina Šemeláková , Lenka Paučulová , Marcel Uhrin and Peter Kaňuch EMAIL logo
From the journal Biologia


Mass hibernacula of several tens of thousands of Pipistrellus pipistrellus associated with the swarming of bats during seasonal movements should serve as important sites of gene flow in this species. The massive occurrence of hibernating bats which is observed in few caves in the Carpathian Mountains encourages the idea that the genetic diversity at these sites will be greater comparing to known situation in surrounding region. This study aimed to determine the genetic diversity of individuals that aggregate in two such caves in Slovakia and Romania with the help of a common and available genetic marker. Using an mtDNA cytochrome b, 571 bp long fragment, very low haplotype diversity was found within both mass hibernacula of P. pipistrellus (15 haplotypes only, from which one significantly predominated with > 80% in both caves). The initial screening did not suggest that hibernating bats migrated to mass hibernacula from remote areas behind central European region. However, reliable study of the species’ migratory behaviour is required to understand more about the phenomenon of the mass hibernacula of these bats.


The research was supported by the Operational Programme Research and Development funded by an ESF grant SOFOS (Knowledge and skill development of the academic staff and students at the University of Pavol Jozef Šafárik in Košice with emphasis on interdisciplinary competencies and integration into international research centres) and by a grant from the Cultural and Educational Grant Agency of the Ministry of Education, Science Research and Sport of the Slovak Republic (KEGA 012UPJŠ-4/2014). We are grateful to Ioan Coroiu for providing us with pipistrelle samples from Romania. Two anonymous reviewers are acknowledged for their comments to an earlier version of the manuscript.


Boston E.S., Puechmaille S.J., Clissmann F. & Teeling E.C. 2014. Further evidence for cryptic north-western refugia in Europe? Mitochondrial phylogeography of the sibling species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Acta Chiropterol. 16: 263–277. DOI: 10.3161/150811014X68723310.3161/150811014X687233Search in Google Scholar

Bryja J., Kaňuch P., Fornůsková A., Bartonička T. & Řehák Z. 2009. Low population genetic structuring of two cryptic bat species suggests their migratory behaviour in continental Europe. Biol. J. Linn. Soc. 96: 103–114. DOI: 10.1111/j.1095-8312.2008.01093.x10.1111/j.1095-8312.2008.01093.xSearch in Google Scholar

Bücs S., Jére C., Csősz I., Barti L. & Szodoray-Parádi F. 2012. Distribution and conservation status of cave-dwelling bats in the Romanian Western Carpathians. Vespertilio 16: 97–113.Search in Google Scholar

Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModel-Test 2: more models, new heuristics and parallel computing. Nature Meth. 9: 772. DOI: 10.1038/nmeth.210910.1038/nmeth.2109Search in Google Scholar

Dietz C., von Helversen O. & Nill D. 2009. Bats of Britain, Europe and Northwest Africa. A&C Black, London, 400 pp. ISBN: 978-1-4081-0531-3Search in Google Scholar

Dumitrescu M. & Orghidan T. 1963 Contribution ŕ la connaissance de la biologie de Pipistrellus pipistrellus Schreber. Annales de Spéléologie 18: 511–517.Search in Google Scholar

Gaisler J., Hanák V., Hanzal V. & Jarský V. 2003. Results of bat banding in the Czech Republic and Slovakia, 1948–2000. Vespertilio 7: 3–61.Search in Google Scholar

García-Mudarra J.L., Ibáñez C. & Juste J. 2009. The Straits of Gibraltar: barrier or bridge to Ibero-Moroccan bat diversity? Biol. J. Linn. Soc. 96: 434–450. DOI: 10.1111/j.1095-8312.2008.01128.x10.1111/j.1095-8312.2008.01128.xSearch in Google Scholar

Horáček I. 1984. Remarks on the causality of population decline in European bats. Myotis 2122: 138–147.Search in Google Scholar

Horáček I. & Jahelková H. 2005. History of the Pipistrellus pipistrellus group in Central Europe in light of its fossil record. Acta Chiropterol. 7: 189–204. DOI: 10.3161/1733-5329(2005)7[189:HOTPPG]2.0.CO;210.3161/1733-5329(2005)7[189:HOTPPG]2.0.CO;2Search in Google Scholar

Hulva P., Benda P., Hanák V., Evin A. & Horáček I. 2007. New mitochondrial lineages within the Pipistrellus pipistrellus complex from Mediterranean Europe. Folia Zool. 56: 378–388.Search in Google Scholar

Hulva P., Fornůsková A., Chudárková A., Evin A., Allegrini B., Benda P. & Bryja J. 2010. Mechanisms of radiation in a bat group from the genus Pipistrellus inferred by phylogeography, demography and population genetics. Mol. Ecol. 19: 5417–5431. DOI: 10.1111/j.1365-294X.2010.04899.x10.1111/j.1365-294X.2010.04899.xSearch in Google Scholar

Hulva P., Horáček I., Strelkov P.P. & Benda P. 2004. Molecular architecture of Pipistrellus pipistrellus/Pipistrellus pygmaeus complex (Chiroptera: Vespertilionidae): further cryptic species and Mediterranean origin of the divergence. Mol. Phylogen. Evol. 32: 1023–1035. DOI: 10.1016/j.ympev.2004.04.00710.1016/j.ympev.2004.04.007Search in Google Scholar

Hutterer R., Ivanova T., Meyer-Cords Ch. & Rodrigues L. 2005. Bat Migrations in Europe. A Review of Banding Data and Literature. Federal Agency for Nature Conservation, Bonn, 162 pp. ISBN: 3-7843-3928-XSearch in Google Scholar

Ibáñez C., García-Mudarra J.L., Ruedi M., Stadelmann B. & Juste J. 2006. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterol. 8: 277–297. DOI: 10.3161/1733-5329(2006)8[277:TICTCD]2.0.CO;210.3161/1733-5329(2006)8[277:TICTCD]2.0.CO;2Search in Google Scholar

Kaňuch P., Fornůsková A., Bartonička T., Bryja J. & Řehák Z. 2010. Do two cryptic pipistrelle bat species differ in their autumn and winter roosting strategies within the range of sympatry? Folia Zool. 59: 102–107.10.25225/fozo.v59.i2.a4.2010Search in Google Scholar

Matis Š., Uhrin M. & Pjenčák P. 2002. Zimovanie netopierov v jaskyni Erna [Hibernation of bats in Erna cave]. Vespertilio 6: 235–236.Search in Google Scholar

McCracken G.F., Safi K., Kunz T.H., Dechmann D.K.N., Swartz S.M. & Wikelski M. 2016. Airplane tracking documents the fastest flight speeds recorded for bats. R. Soc. Open Sci. 3: 160398. DOI: 10.1098/rsos.16039810.1098/rsos.160398Search in Google Scholar

Nagy Z.L. & Postawa T. 2011. Seasonal and geographical distribution of cave-dwelling bats in Romania: implications for conservation. Anim. Conserv. 14: 74–86. DOI: 10.1111/j.1469-1795.2010.00392.x10.1111/j.1469-1795.2010.00392.xSearch in Google Scholar

Nagy Z.L. & Szántó L. 2003. The occurrence of hibernating Pipistrellus pipistrellus (Schreber, 1174) in caves of the Carpathian Basin. Acta Chiropterol. 5: 155–160. DOI: 10.3161/001.005.011510.3161/001.005.0115Search in Google Scholar

Roer H. 1989. Field experiments about the homing behaviour of the Common Pipistrelle (Pipistrellus pipistrellus Schreber), pp. 551–558. In: Hanák V., Horáček I. & Gaisler J. (eds), European Bat Research 1987, Charles University Press, Prague.Search in Google Scholar

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. System. Biol. 61: 539–542. DOI: 10.1093/sysbio/sys02910.1093/sysbio/sys029Search in Google Scholar

Rydell J., Bach L., Bach P., Diaz L.G., Furmankiewicz J., Hagner-Wahlsten N., Kyheröinen E.-M., Lilley T., Masing M., Meyer M.M., Pētersons G., Šuba J., Vasko V., Vintulis V. & Hedenström A. 2014. Phenology of migratory bat activity across the Baltic Sea and the south-eastern North Sea. Acta Chiropterol. 16: 139–147. DOI: 10.3161/150811014X68335410.3161/150811014X683354Search in Google Scholar

Sachteleben J., von Helversen O. 2006. Songflight behaviour and mating system of the pipistrelle bat (Pipistrellus pipistrellus) in an urban habitat. Acta Chiropterol. 8: 391–401. DOI: 10.3161/1733-5329(2006)8[391:SBAMSO]2.0.CO;210.3161/1733-5329(2006)8[391:SBAMSO]2.0.CO;2Search in Google Scholar

Sendor T. & Simon M. 2003. Population dynamics of the pipistrelle bat: effects of sex, age and winter weather on seasonal survival. J. Anim. Ecol. 72: 308–320. DOI: 10.1046/j.1365-2656.2003.00702.x10.1046/j.1365-2656.2003.00702.xSearch in Google Scholar

Siivonen Y. & Wermundsen T. 2003. First records of Myotis dasycneme and Pipistrellus pipistrellus in Finland. Vespertilio 7: 177–179.Search in Google Scholar

Smit-Viergutz J. & Simon M. 2000. Eine vergleichende Analyse des sommerlichen Schwärmverhaltens der Zwergfledermaus (45 kHz Ruftyp, Pipistrellus pipistrellus Schreber, 1774) an den Invasionsorten und am Winterquartier. Myotis 38: 69–89.Search in Google Scholar

Smith M.F. & Patton J.L. 1993. The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol. J. Linn. Soc. 50: 149–177. DOI: 10.1111/j.1095-8312.1993.tb00924.x10.1111/j.1095-8312.1993.tb00924.xSearch in Google Scholar

Sztencel-Jabłonka A. & Bogdanowicz W. 2012. Population genetics study of common (Pipistrellus pipistrellus) and soprano (Pipistrellus pygmaeus) pipistrelle bats from central Europe suggests interspecific hybridization. Can. J. Zool. 90: 1251–1260. DOI: 10.1139/z2012-09210.1139/z2012-092Search in Google Scholar

Taake K.-H. & Vierhaus H. 2004. Pipistrellus pipistrellus (Schreber, 1774) – Zwergfledermaus, pp. 761–814. In: Krapp F. (ed), Handbuch der Säugetiere Europas. Band 4. Fledertiere, Teil II: Chiroptera II. Aula Verlag, Wiebelsheim.Search in Google Scholar

Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. DOI: 10.1093/molbev/msr12110.1093/molbev/msr121Search in Google Scholar

Teacher A.G.F. & Griffiths D.J. 2011. HapStar: automated haplotype network layout and visualisation. Mol. Ecol. Resour. 11: 151–153. DOI: 10.1111/j.1755-0998.2010.02890.x10.1111/j.1755-0998.2010.02890.xSearch in Google Scholar

Uhrin M. 1994. Príspevok k hibernácii podkovára južného (Rhinolophus euryale) a večernice malej (Pipistrellus pipistrellus) v Slovenskom krase [Contribution to the hibernation of the Mediterranean horseshoe bat (Rhinolophus euryale) and the common pipistrelle (Pipistrellus pipistrellus) in the Slovak Karst]. Lynx, n. s. 26: 17–20.Search in Google Scholar

Uhrin M. 1995. The finding of mass winter colony of Barbastella barbastellus and Pipistrellus pipistrellus (Chiroptera, Vespertilionidae) in Slovakia. Myotis 3233: 131–133.Search in Google Scholar

Voigt C.C., Lindecke O., Schönborn S., Kramer-Schadt S. & Lehmann D. 2016. Habitat use of migratory bats killed during autumn at wind turbines. Ecol. Appl. 26: 771–783. DOI: 10.1890/15-067110.1890/15-0671Search in Google Scholar PubMed

Received: 2016-11-10
Accepted: 2017-3-6
Published Online: 2017-5-30
Published in Print: 2017-5-24

© 2017 Institute of Zoology, Slovak Academy of Sciences

Downloaded on 30.5.2023 from
Scroll to top button