Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter July 29, 2015

An adjustable flow restrictor for implantable infusion pumps based on porous ceramics

Holger Jannsen, Stephan Klein and Bodo Nestler

Abstract

This paper describes an adjustable flow restrictor for use in gas-driven implantable infusion pumps, which is based on the resistance of a flow through a porous ceramic material. The flow inside the walls of a ceramic tube can be adjusted between 270 nl/min and 1260 nl/min by changing the flow path length in the ceramic over a distance of 14 mm. The long-term stability of the flow restrictor has been analyzed. A drift of -8% from the nominal value was observed, which lies within the required tolerance of ±10% after 30 days. The average time needed to change the flow rate is 40 s. In addition, the maximum adjustment time was 110 s, which also lies within the specification.


Corresponding author: Bodo Nestler, Luebeck University of Applied Sciences, Medical Sensors and Devices Lab, Mönkhofer Weg 239, 23562 Lübeck, Germany, Phone: +49 451 300 5524, Fax: +49 451 300 5100, E-mail:

Acknowledgments

The authors would like to thank the German Federal Ministry for Education and Science for funding the project “VarioPump” within its program “Intelligente Implantate” (BMBF 16SV3784) and the company Tricumed Medizintechnik GmbH, Kiel, for the good cooperation.

References

[1] Bear J. Dynamics of fluids in porous media. New York: Elsevier 1972.Search in Google Scholar

[2] Blackshear PJ, Dorman F, Blackshear PL, et al. Dampfdruckbetriebene nachfüllbare Infusionspumpe. Patent DE 2124062 C3, 1971.Search in Google Scholar

[3] Blackshear PJ, Dorman F, Blackshear PL, et al. Implantable Infusionpump. Patent US 3 731 681, 1973.Search in Google Scholar

[4] Cohen S, Dragovich A. Intrathecal analgesia. Anesthesiol Clin 2007; 25: 863–882.Search in Google Scholar

[5] Holzapfel B, Reichert J, Schantzc J-Th, et al. How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliver Rev 2013; 65: 581–603.Search in Google Scholar

[6] ISO 14708-4:2008. Implants for surgery – active implantable medical devices – part 1: implantable infusion pumps.Search in Google Scholar

[7] Jannsen H. Realisierung eines Funktionsmodells einer verstellbaren Drossel für Medikamentenpumpen, Master Thesis, Fachhochschule Lübeck 2013.Search in Google Scholar

[8] Kambiz V (ed.). Handbook of porous media. 2nd ed. New York: Marcel Dekker 2005.Search in Google Scholar

[9] Liquid flow meter LG16. . Accessed: 25 June 2015.Search in Google Scholar

[10] Mutlu S. Entwicklung einer Fluid-Drossel aus porösen Keramiken zur Einstellung von Fluidströmen im Bereich der Nanofluidik. Dissertation Universität zu Lübeck 2015.Search in Google Scholar

[11] Mutlu YS, Klein S, Nestler B. Development of a throttle for an implantable infusion pump using porous ceramics. Biomed Tech/Biomed Eng 2012; 57: 255–258.Search in Google Scholar

[12] Nelissen RM. Fluid mechanics of intrathecal drug delivery. PhD thesis, École polytechnique Fédérale de Lausanne 2008.Search in Google Scholar

[13] Nestler B. Regelbare Drosselstrecke. DE 102009022182. Jan. 2011, Pat. DE 10 2009 022 182 A1.Search in Google Scholar

[14] Nield DA, Bejan A. Convection in porous media. New York: Springer 2013.Search in Google Scholar

[15] Otto KH, Nestler B, Ickert M, et al. Entwicklung einer einstellbaren Drossel mit porösen Keramiken für implantierbare Infusionspumpen. Abschlussbericht. BMBF-Projekt VarioPump, Fachhochschule Lübeck 2013.Search in Google Scholar

[16] Tronnier VM. Intrathekale Therapien, Pumpen, Pumpenversagen. In: Schwab S, Schellinger P, Werner C, et al. editors. NeuroIntensiv 2nd ed. Berlin: Springer 2012.Search in Google Scholar

[17] Zacharias V, Henke P. Project VarioPump requirement specification. Tricumed Medizintechnik GmbH 2009.Search in Google Scholar

Received: 2015-4-15
Accepted: 2015-7-10
Published Online: 2015-7-29
Published in Print: 2015-8-1

©2015 by De Gruyter