Abstract
Objectives
In open structure MPI systems, the nonlinear variation of the field free lines in the large region of interest scanning process distorts the x-space image reconstruction. In this study, we propose a nonlinear field free line projection reconstruction algorithm to solve the edge distortion problem of open structure MPI imaging.
Methods
First, we calculate the curvature change law of the field free line in the scanning process. Then, we design a nonlinear back projection reconstruction algorithm according to the nonlinear characteristics of the field free line in the scanning process. Finally, the nonlinear back projection reconstruction algorithm is used to complete the tomography of blood vessels.
Results
The numerical calculation and simulation results show that the open structure MPI combined with a nonlinear back projection reconstruction algorithm can accomplish vascular fault reconstruction. The reconstruction algorithm proposed in this paper suppresses the edge distortion of the image and improves the positioning accuracy of the image. The size of the region of interest where distortions are low is increased 16 times by allowing 10.9% degradation in the gradient.
Conclusions
We provide a non-linear inverse projection reconstruction algorithm to reduce the structural artefacts caused by FFL distortion. It provides a reconstruction scheme for a large region of interest fine imaging of open structure FFL-MPI.
Funding source: The National Nature Science Foundation of China
Award Identifier / Grant number: 52077143
Funding source: The tackling-key project from Liaoning Education Department
Award Identifier / Grant number: LZGD2020002
Funding source: Liaoning Provincial Education Department Scientific Research Project
Award Identifier / Grant number: LJKZ0131
Acknowledgments
This work is supported by the National Nature Science Foundation of China (52077143), Liaoning Provincial Education Department Scientific Research Project (LJKZ0131) and the tackling-key project from Liaoning Education Department (LZGD2020002).
-
Research funding: The National Nature Science Foundation of China (52077143), the Nature Science Foundation of Liaoning Province (2019-ZD-0204) and the tackling-key project from Liaoning Education Department (LZGD2020002).
-
Author contributions: All authors have accepted respon-sibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Authors state no conflict of interest.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Ethical approval: The local Institutional Review Board deemed the study exempt from review.
References
1. Choi, SM, Jeong, JC, Kim, J, Lim, EG, Kim, CB, Park, SJ, et al.. A novel three-dimensional magnetic particle imaging system based on the frequency mixing for the point-of-care diagnostics. Sci Rep 2020;10:e11833. https://doi.org/10.1038/s41598-020-68864-9.Suche in Google Scholar PubMed PubMed Central
2. Graeser, M, Knopp, T, Szwargulski, P, Friedrich, T, von Gladiss, A, Kaul, M, et al.. Towards picogram detection of superparamagnetic iron-oxide particles using a gradiometric receive coil. Sci Rep 2017;7:e6872. https://doi.org/10.1038/s41598-017-06992-5.Suche in Google Scholar PubMed PubMed Central
3. Pagan, J, McDonough, C, Vo, T, Tonyushkin, A. Single-sided magnetic particle imaging device with field-free-line geometry for in-vivo imaging applications. IEEE Trans Magn 2021;57:e5300105. https://doi.org/10.1109/tmag.2020.3008596.Suche in Google Scholar PubMed PubMed Central
4. Vogel, P, Ruckert, MA, Kemp, SJ, Khandhar, AP, Ferguson, RM, Herz, S, et al.. Micro-traveling wave magnetic particle imaging-sub-millimeter resolution with optimized tracer LS-008. IEEE Trans Magn 2019;55:e5300207. https://doi.org/10.1109/tmag.2019.2924198.Suche in Google Scholar
5. Weizenecker, J, Gleich, B, Rahmer, J, Dahnke, H, Borgert, J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 2009;54:L1–10. https://doi.org/10.1088/0031-9155/54/5/l01.Suche in Google Scholar PubMed
6. Vogel, P, Ruckert, MA, Kampf, T, Herz, S, Stang, A, Wockel, L, et al.. Superspeed bolus visualization for vascular magnetic particle imaging. IEEE Trans Med Imag 2020;39:2133–9. https://doi.org/10.1109/tmi.2020.2965724.Suche in Google Scholar PubMed
7. Herz, S, Vogel, P, Kampf, T, Dietrich, P, Veldhoen, S, Ruckert, MA, et al.. Magnetic particle imaging-guided stenting. J Endovasc Ther 2019;26:512–9. https://doi.org/10.1177/1526602819851202.Suche in Google Scholar PubMed
8. Herz, S, Vogel, P, Dietrich, P, Kampf, T, Ruckert, MA, Kickuth, R, et al.. Magnetic particle imaging guided real-time percutaneous transluminal angioplasty in a phantom model. Cardiovasc Intervent Radiol 2018;41:1100–5. https://doi.org/10.1007/s00270-018-1955-7.Suche in Google Scholar PubMed
9. Talebloo, N, Gudi, M, Robertson, N, Wang, P. Magnetic particle imaging: current applications in biomedical research. J Magn Reson Imag 2019;51:1659–68. https://doi.org/10.1002/jmri.26875.Suche in Google Scholar PubMed
10. Gleich, B, Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005;435:1214–7. https://doi.org/10.1038/nature03808.Suche in Google Scholar PubMed
11. Weizenecker, J, Gleich, B, Borgert, J. Magnetic particle imaging using a field free line. J Phys D Appl Phys 2008;41:e105009. https://doi.org/10.1088/0022-3727/41/10/105009.Suche in Google Scholar
12. Konkle, JJ, Goodwill, PW, Carrasco-Zevallos, OM, Conolly, SM. Projection reconstruction magnetic particle imaging. IEEE Trans Med Imag 2013;32:338–47. https://doi.org/10.1109/tmi.2012.2227121.Suche in Google Scholar
13. Murase, K. Simultaneous correction of sensitivity and spatial resolution in projection-based magnetic particle imaging. Med Phys 2020;47:1845–59. https://doi.org/10.1002/mp.14056.Suche in Google Scholar PubMed
14. Rahmer, J, Weizenecker, J, Gleich, B, Borgert, J. Analysis of a 3-D system function measured for magnetic particle imaging. IEEE Trans Med Imag 2012;31:1289–99. https://doi.org/10.1109/tmi.2012.2188639.Suche in Google Scholar
15. Shimada, K, Murase, K. Effect of signal filtering on image quality of projection-based magnetic particle imaging. Open J Med Imag 2017;7:43–55. https://doi.org/10.4236/ojmi.2017.72005.Suche in Google Scholar
16. Shen, K, Liu, SD, Feng, T, Yuan, J, Zhu, BP, Tian, C. Negativity artifacts in back projection based photoacoustic tomography. J Phys D Appl Phys 2021;54:e074001. https://doi.org/10.1088/1361-6463/abc37d.Suche in Google Scholar
17. Beckmann, M, Maass, P, Nickel, J. Error analysis for filtered back projection reconstructions in besov spaces. Inverse Probl 2021;37:e014002. https://doi.org/10.1088/1361-6420/aba5ee.Suche in Google Scholar
18. Ozaslan, AA, Alacaoglu, A, Demirel, OB, Çukur, T, Saritas, EU. Fully automated gridding reconstruction for non-Cartesian x-space magnetic particle imaging. Phys Med Biol 2019;64:e165018. https://doi.org/10.1088/1361-6560/ab3525.Suche in Google Scholar PubMed
19. Rahmer, J, Stehning, C, Gleich, B. Remote magnetic actuation using a clinical scale system. PLoS One 2018;13:e0193546. https://doi.org/10.1371/journal.pone.0193546.Suche in Google Scholar PubMed PubMed Central
20. Tonyushkin, A. Single-sided field free line generator magnet for multi-dimensional magnetic particle imaging. IEEE Trans Magn 2017;53:1–6. https://doi.org/10.1109/tmag.2017.2718485.Suche in Google Scholar
21. Top, CB, Güngör, A. Tomographic field free line magnetic particle imaging with an open-sided scanner configuration. IEEE Trans Med Imag 2020;39:4164–73. https://doi.org/10.1109/tmi.2020.3014197.Suche in Google Scholar PubMed
22. Graeser, M, Thieben, F, Szwargulski, P, Werner, F, Gdaniec, N, Boberg, M, et al.. Human-sized magnetic particle imaging for brain applications. Nat Commun 2019;10:e1936. https://doi.org/10.1038/s41467-019-09704-x.Suche in Google Scholar PubMed PubMed Central
23. Sattel, TF, Knopp, T, Biederer, S, Gleich, B, Weizenecker, J, Borgert, J, et al.. Single-sided device for magnetic particle imaging. J Phys Appl Phys 2009;42:22001–5. https://doi.org/10.1088/0022-3727/42/2/022001.Suche in Google Scholar
24. Knopp, T, Erbe, M, Biederer, S, Sattel, TF, Buzug, TM. Efficient generation of a magnetic field free line. Med Phys 2010;37:3538–40. https://doi.org/10.1118/1.3447726.Suche in Google Scholar PubMed
25. Bente, K, Weber, M, Graeser, M, Sattel, TF, Erbe, M, Buzug, TM. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging. IEEE Trans Med Imag 2015;34:644–51. https://doi.org/10.1109/tmi.2014.2364891.Suche in Google Scholar PubMed
26. Top, CB, Güngör, A, Ilbey, S, Güven, HE. Trajectory analysis for field free line magnetic particle imaging. Med Phys 2019;46:1592–607. https://doi.org/10.1002/mp.13411.Suche in Google Scholar PubMed
27. Top, CB, Ilbey, S, Güven, HE. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging. Med Phys 2017;44:6225–38. https://doi.org/10.1002/mp.12604.Suche in Google Scholar
28. Liu, YY, Du, Q, Ke, L, Zu, WN. Design and analysis of magnetic field free line in magnetic particle imaging. Trans China Electrotech Soc 2020;35:2088–97.Suche in Google Scholar
29. Rahmer, J, Weizenecker, J, Gleich, B, Borgert, J. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imag 2009;9:1–21. https://doi.org/10.1186/1471-2342-9-4.Suche in Google Scholar PubMed PubMed Central
30. Biederer, S, Tobias, K, Sattel, TF, Kerstin, LB, Bernhard, G, Jürgen, W, et al.. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. J Phys Appl Phys 2009;42:e205007. https://doi.org/10.1088/0022-3727/42/20/205007.Suche in Google Scholar
31. Goodwill, PW, Conolly, SM. The x-space formulation of the magnetic particle imaging process: one-dimensional signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imag 2010;29:1851–9. https://doi.org/10.1109/tmi.2010.2052284.Suche in Google Scholar PubMed
32. Goodwill, PW, Conolly, SM. Multidimensional x-space magnetic particle imaging. IEEE Trans Med Imag 2011;30:1581–90. https://doi.org/10.1109/tmi.2011.2125982.Suche in Google Scholar
33. Knopp, T, Erbe, M, Sattel, TF, Biederer, S, Buzug, TM. A Fourier slice theorem for magnetic particle imaging using a field-free line. Inverse Probl 2011;27:095004. https://doi.org/10.1088/0266-5611/27/9/095004.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston