Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 8, 2014

Antibacterial polyamides based on a dendritic zinc-hybrid with good biocompatibility showing reduced biofilm formation

  • Michael Gladitz , Janine Bauer , Peggy Brückner , Stefan Reinemann EMAIL logo , Cornelia Wiegand , Michael Zieger , Kirsten Reddersen , Uta-Christina Hipler , Marion Frant , Klaus Liefeith and Hans-Joachim Radusch
From the journal BioNanoMaterials

Abstract

Antimicrobial organic-inorganic hybrids based on amphiphilic dendritic hyperbranched polyethylenimine with zinc were prepared. To study their property profile and potential as an antimicrobial modifier they were incorporated via melt extrusion into cast films or injection molded into plates of polyamide (PA). The antimicrobial efficacy, bacterial adhesion, cytotoxicity and blood compatibility of the respective PA composites were investigated as a function of material composition and morphology. It could be demonstrated that the polymers with the developed zinc-hybrids possess a high antimicrobial efficacy as well as good cyto- and hemo-compatibility in vitro. Furthermore, they showed reduced bacterial adhesion. Finally, it can be stated that the developed zinc-hybrids are suitable as advanced additive agents for the production of antimicrobial polymer materials with promising properties particular for various medical applications.


Corresponding author: Dr. Stefan Reinemann, Thuringian Institute of Textile and Plastics Research, Department of Plastics Research, Breitscheidstr. 97, 07407 Rudolstadt, Germany, Phone: +49 3672 379400, Fax: +49 3672 379379, E-mail:

Acknowledgments

The authors would like to thank the Federal Ministry of Economics and Technology for the financial support of this work (BMWi, project no. MF100065).

References

1. Wintermantel E, Ha SW. Medizintechnik mit biokompatiblen Werkstoffen und Verfahren, 3rd ed. Berlin Heidelberg New York: Springer, 2002:150.Search in Google Scholar

2. Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cells Mater 2004;8:37–57.10.22203/eCM.v008a05Search in Google Scholar

3. Salz D, Mahltig B, Baalmann A, Wark M, Jaeger N. Metal clusters in plasma polymer matrices, Part III: optical properties and redox behaviour of Cu clusters. Phys Chem Chem Phys 2000;2:3105–10.10.1039/b002327mSearch in Google Scholar

4. Damm C, Münstedt H, Rösch A. The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 2008;108:61–6.10.1016/j.matchemphys.2007.09.002Search in Google Scholar

5. Lansdown AB, Sampson B, Laupattarakasem P, Vuttivirojana A. Silver aids healing in the sterile skin wound: experimental studies in the laboratory rat. Br J Dermatol 1997;157:728–35.10.1111/j.1365-2133.1997.tb01109.xSearch in Google Scholar

6. von Nägeli C. On the oligodynamic phenomenon in living cells. Denkschriften der Schweiz Naturforsch Ges 1983;33:174–82.Search in Google Scholar

7. Karuna Sagar I, Nagesha CN, Gundu Rao P. Effectiveness of zinc sulphadiazine, zinc sulphate and silver sulphadiazine in the topical therapy of pseudomonas infection in burns. Burns 1978;6:131–3.10.1016/0305-4179(79)90011-1Search in Google Scholar

8. Atmaca S, Gül K, Çiçek R. The effect of zinc on microbial growth. Turk J Med Sci 1998;28:595–7.Search in Google Scholar

9. Varkey AJ. Antibacterial properties of some metals and alloys in combating coliforms in contaminated water. Sci Res Essays 2010;5:3834–9.Search in Google Scholar

10. Clarkin O, Wren A, Thornton R, Cooney J, Towler M. Antibacterial analysis of a zinc-based glass polyalkenoate cement. J Biomater Appl 2011;26:277–92.10.1177/0885328210364430Search in Google Scholar PubMed

11. Dal Lago V, de Oliveira LF, de Almeida Gonçalves K, Kobarg J, Borba Cardoso M. Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties. J Mater Chem 2011;21:12267–73.10.1039/c1jm12297eSearch in Google Scholar

12. Ravishankar Rai V, Jamuna Bai A. Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A. Editor. Science against microbial pathogens: communicating current research and technological advances, Badajoz: Formatex 2011:197–209.Search in Google Scholar

13. Amin RM. Nanotechnology in controlling infectious disease. In: Hunter RJ, Preedy VR, editors. Nanomedicine in health and disease, St. Helier Jersey British Channel: Science Publishers Islands, 2011:167–83.Search in Google Scholar

14. Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 2011;6:933–40.10.2217/fmb.11.78Search in Google Scholar PubMed

15. Damm C, Münstedt H, Rösch A. Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 2007;42:6067–73.10.1007/s10853-006-1158-5Search in Google Scholar

16. Zhang H, Wang D, Butler R, Campbell NL, Long J, Tan B, et al. Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 2008;3:506–11.10.1038/nnano.2008.188Search in Google Scholar PubMed

17. Koltzenburg S. Formulation of problem drugs – and they are all problem drugs. In: Reintjes T, Editor. Solubilizer Compendium – Solubility Enhancement with BASF Pharma Polymers, Lampertheim: BASF, 2011:9–26.Search in Google Scholar

18. Prodduturi S, Urman KL, Otaigbe JU, Repka MA. Stabilization of hot-melt extrusion formulations containing solid solutions using polymer blends. AAPS Pharm Sci Tech 2007;8:E152.10.1208/pt0802050Search in Google Scholar PubMed PubMed Central

19. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 2009;8:543–57.10.1038/nmat2442Search in Google Scholar PubMed

20. Cattaneo AG, Gornati R, Sabbioni E, Chiriva-Internati M, Cobos E, Jenkins MR, et al. Nanotechnology and human health: risks and benefits. J Appl Toxicol 2010;30:730–44.10.1002/jat.1609Search in Google Scholar PubMed

21. Haag R, Krämer M, Stumbé JF, Krause S, Komp A, Prokhorova S. Dendritic polymers as multifunctional supports and nanocarriers for drugs. Polym Prepr 2002;43:328–32.Search in Google Scholar

22. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 2002;24:3018–9.10.1039/b208575eSearch in Google Scholar PubMed

23. Monticelli O, Russo S, Campagna R, Voit B. Preparation and characterization of blends based on polyamide 6 and hyperbranched aramids as palladium nanoparticle supports. Polymer 2005;46:3597–606.10.1016/j.polymer.2005.03.029Search in Google Scholar

24. Jones MC, Leroux J-C. Reverse micelles from amphiphilic branched polymers. Soft Matter 2010;6:5850–9.10.1039/c0sm00272kSearch in Google Scholar

25. Kannan RM, Perumal OP, Kannan S. Dendrimers and hyperbranched polymers for drug delivery. In: Labhasetwar V, Leslie-Pelecky DL, editors. Biomedical applications of nanotechnology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007:105–29.Search in Google Scholar

26. Li Y, Cui L, Li Q, Jia L, Xu Y, Fang Q, et al. Novel symmetric amphiphilic dendritic poly(L-lysine)-b-poly(L-lactide)-b-dendritic poly(L-lysine) with high plasmid DNA binding affinity as a biodegradable gene carrier. Biomacromolecules 2007;8:1409–16.10.1021/bm0701806Search in Google Scholar PubMed

27. Sun X, Dong S, Wang E. One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 2004;37:7105–8.10.1021/ma048847tSearch in Google Scholar

28. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 2001;1:18–21.10.1021/nl005502pSearch in Google Scholar

29. Hu X, Zhou L, Gao C. Hyperbranched polymers meet colloid nanocrystals: a promising avenue to multifunctional, robust nanohybrids. Colloid Polym Sci 2011;289:1299–320.10.1007/s00396-011-2457-1Search in Google Scholar

30. Antonietti L, Aymonier C, Schlotterbeck U, Garamus VM, Maksimova T, Richtering W, et al. Core-shell-structured highly branched poly(ethylenimine amide)s: synthesis and structure. Macromolecules 2005;38:5914–20.10.1021/ma047458wSearch in Google Scholar

31. Vrignaud S, Anton N, Gayet P, Benoit JP, Saulnier P. Reverse micelle-loaded lipid nanocarriers: a novel drug delivery system for the sustained release of doxorubicin hydrochloride. Eur J Pharm Biopharm 2011;79:197–204.10.1016/j.ejpb.2011.02.015Search in Google Scholar PubMed

32. Wang Y, Grayson SM. Approaches for the preparation of non-linear amphiphilic polymers and their applications to drug delivery. Adv Drug Deliv Rev 2012;64:852–65.10.1016/j.addr.2012.03.011Search in Google Scholar PubMed

33. Alexandridis P, Tsianou M. Block copolymer-directed metal nanoparticle morphogenesis and organization. Eur Polym J 2011;47:569–83.10.1016/j.eurpolymj.2010.10.021Search in Google Scholar

34. Kobayashi S, Hiroishi K, Tokunoh M, Saegusa T. Chelating properties of linear and branched poly(ethy1enimines). Macromolecules 1987;20:1496–500.10.1021/ma00173a009Search in Google Scholar

35. Gianchandani J, Spruiell JE, Clark ES. Polymorphism and orientation development in melt spinning, drawing, and annealing of nylon-6 filaments. J Appl Polym Sci 1982;27:3527–51.10.1002/app.1982.070270928Search in Google Scholar

36. Bechert T, Böswald M, Lugauer S, Regenfus A, Greil J, Guggenbichler JP. The Erlanger silver catheter: in vitro results for antimicrobial activity. Infection 1999;27:24–9.10.1007/BF02561613Search in Google Scholar PubMed

37. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev 2006;35:780–9.10.1039/b515219bSearch in Google Scholar PubMed

38. Hernandez RJ, Gavara R. Sorption and transport of water in nylon-6 films. J Polym Sci B Polym Phys 1994;32:2367–74.10.1002/polb.1994.090321407Search in Google Scholar

39. Kumar R, Münstedt H. Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release. Polym Int 2005;54:1180–6.10.1002/pi.1828Search in Google Scholar

40. Calabretta MK, Kumar A, McDermott AM, Cai C. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules 2007;8:1807–11.10.1021/bm0701088Search in Google Scholar

41. von Eiff C, Kipp F, Peters G. Pathogenese, Diagnostik und Prävention von fremdkörperassoziierten Infektionen. Internist 2000;41:1180–8.10.1007/s001080050678Search in Google Scholar

42. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis 2002;8:881–90.10.3201/eid0809.020063Search in Google Scholar

43. Van Oss CJ. The forces involved in bioadhesion to flat surfaces and particles – Their determination and relative roles. Biofouling 1991;4:25–35.10.1080/08927019109378192Search in Google Scholar

44. Glantz PO, Arnebrant T, Nylander T, Baier RE. Bioadhesion – a phenomenon with multiple dimensions. Acta Odontol Scand 1999;57:238–41.10.1080/000163599428634Search in Google Scholar

45. Cramton S, Gerke C, Schnell N, Nichols W, Gotz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 1999;67: 5427–33.10.1128/IAI.67.10.5427-5433.1999Search in Google Scholar

46. Wollina U, Hipler UC, Seeling H, Oelschläger H. Investigations of interactions of chlormezanone racemate and its enantiomers on human keratinocytes and human leucocytes in vitro. Skin Pharmacol Physiol 2005;18:132–8.10.1159/000084910Search in Google Scholar

47. Singhal JP, Ray AR. Synthesis of blood compatible polyamide block copolymers. Biomaterials 2002;23:1139–45.10.1016/S0142-9612(01)00228-9Search in Google Scholar

48. Nowak G, Lange U, Wiesenburg A, Bucha E. Measurement of maximum thrombin generation capacity in blood and plasma using the thrombin generation assay (THROGA). Semin Thromb Hemost 2007;33:508–14.10.1055/s-2007-982082Search in Google Scholar PubMed

49. Fischer M, Sperling C, Werner C. Synergistic effect of hydrophobic and anionic surface groups triggers blood coagulation in vitro. J Mater Sci Mater Med 2010;21:931–7.10.1007/s10856-009-3912-0Search in Google Scholar PubMed

50. Raghavachari M, Tsai H, Kottke-Marchant K, Marchant RE. Surface dependent structures of von Willebrand factor observed by AFM under aqueous conditions. Colloids Surf B: Biointerfaces 2000;19:315–24.10.1016/S0927-7765(00)00140-5Search in Google Scholar

51. Moghimi SM, Ndersen AJ, Ahmadvand D, Wibroe PP, Andresen TL, Hunter AC. Material properties in complement activation. Adv Drug Delivery Rev 2011;63:1000–7.10.1016/j.addr.2011.06.002Search in Google Scholar PubMed

52. Sokolov A, Hellerud BC, Johannessen EA, Mollnes TE. Inflammatory response induced by candidate biomaterials of an implantable microfabricated sensor. J Biomed Mater Res A 2012;100:1142–50.10.1002/jbm.a.34054Search in Google Scholar PubMed

53. Frant M, Stenstad P, Johnsen H, Doelling K, Rothe U, Schmid R, et al. Anti-infective surfaces based on tetraether lipids for peritoneal dialysis catheter systems. Mat-wiss u Werkstofftech 2006;37:538–45.10.1002/mawe.200600034Search in Google Scholar

54. Wiegand C, Winter D, Hipler UC. Molecular-weight-dependent toxic effects of chitosans on the human keratinocyte cell line HaCaT. Skin Pharmacol Physiol 2010;23:164–70.10.1159/000276996Search in Google Scholar PubMed

55. Ng VL. Prothrombin time and partial thromboplastin time assay considerations. Clin Lab Med 2009;29:253–63.10.1016/j.cll.2009.05.002Search in Google Scholar PubMed

56. Shih MF, Shau MD, Changa MJ, Chiou SK, Changa JK, Cherng JY. Platelet adsorption and hemolytic properties of liquid crystal/composite polymers. Int J Pharm 2006;327:117–25.10.1016/j.ijpharm.2006.07.043Search in Google Scholar PubMed


Supplemental Material

The online version of this article (DOI: 10.1515/bnm-2014-0009) offers supplementary material, available to authorized users.


Received: 2014-6-10
Accepted: 2014-9-19
Published Online: 2014-10-8
Published in Print: 2014-9-1

©2014 by De Gruyter

Downloaded on 24.9.2023 from https://www.degruyter.com/document/doi/10.1515/bnm-2014-0009/html
Scroll to top button