Accessible Requires Authentication Published by De Gruyter April 1, 2015

Species separation within the Lessonia nigrescens complex (Phaeophyceae, Laminariales) is mirrored by ecophysiological traits

Kristina Koch, Martin Thiel, Florence Tellier, Wilhelm Hagen, Martin Graeve, Fadia Tala, Philipp Laeseke and Kai Bischof
From the journal Botanica Marina

Abstract

Lessonia nigrescens used to be an abundant kelp species along the Chilean coast, but recent molecular studies revealed the existence of a L. nigrescens species complex, which includes the two cryptic species Lessonia berteroana and Lessonia spicata. Since these species have different distributions (16°S–30°S for L. berteroana and 29°S–42°S for L. spicata), they experience differences in environmental conditions, such as solar irradiance, seawater temperature and air exposure during low tide. This study tested to what extent the genetic distinctness of each of the two species [identified by a mitochondrial marker (atp8/trnS)] is reflected by ecophysiological traits (total lipids, fatty acid composition, phlorotannins, pigments and variable chlorophyll a fluorescence of PSII) in response to the respective environmental conditions, prevailing along the latitudinal gradient. We studied algal individuals from eight populations (27°S–32°S, including the species overlapping zone). Phlorotannins, pigments and Chl a fluorescence of PSII were most crucial for species-specific adaptations at the respective growth sites, whereas changes in total lipids and fatty acid compositions were negligible. Hence, species differentiation within the L. nigrescens complex is also manifested at the ecophysiological level. These findings may help to predict kelp responses towards future environmental changes.


Corresponding author: Kristina Koch, Department of Marine Botany and Bremen Marine Ecology Center for Research and Education (BreMarE), University of Bremen, Leobener Str. NW2, 28359 Bremen, Germany, e-mail:

Acknowledgments

Funding of this study was provided by the FONDECYT grant 1100749 to M. Thiel and F. Tala, by the INICIACIÓN grant 11121504 to F. Tellier and by the University of Bremen (internal funding). We would like to thank the members of the BEDIM laboratory (UCN) for their help in the field. Furthermore, we are grateful to Britta Meyer-Schlosser for technical support in pigment analysis (HPLC), to Dr. Anna Schukat for competent assistance with the lipid evaluations, to Natalia Valderrama for species identification and to Oscar Pino for preparation of Figure 1.

References

Becker, S., M. Graeve and K. Bischof. 2010. Photosynthesis and lipid composition of the Antarctic endemic rhodophyte Palmaria decipiens: effects of changing light and temperature levels. Polar Biol. 33: 945–955. Search in Google Scholar

Bligh, E.G. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917. Search in Google Scholar

Broitman, B.R., S.A. Navarrete, F. Smith and S.D. Gaines. 2001. Geographic variation of southeastern Pacific intertidal communities. Mar. Ecol. Prog. Ser.224: 21–34. Search in Google Scholar

Büchel, C. and C. Wilhelm. 1993. In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectives. Photochem. Photobiol. 58: 137–148. Search in Google Scholar

Camus, P.A. 2001. Biogeografia marina de Chile continental. Rev. Chil. Hist. Nat.74: 587–617. Search in Google Scholar

Cárdenas, L., J.C. Castilla and F. Viard. 2009. A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. J. Biogeogr.36: 969–981. Search in Google Scholar

Colombo-Pallotta, M.F., E. García-Mendoza and L.B. Ladah. 2006. Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J. Phycol.42: 1225–1234. Search in Google Scholar

Cruces, E., P. Huovinen and I. Gómez. 2012. Phlorotannin and antioxidant responses upon short-term exposure to UV radiation and elevated temperature in three South Pacific kelps. Photochem. Photobiol.88: 58–66. Search in Google Scholar

Davison, I.R. and G.A. Pearson. 1996. Stress tolerance in intertidal seaweeds. J. Phycol. 32: 197–211. Search in Google Scholar

Folch, J., M. Lees and G.H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem.226: 497–509. Search in Google Scholar

González, A., J. Beltrán, L. Hiriart-Bertrand, V. Flores, B. Reviers de, J.A. Correa and B. Santelices. 2012. Identification of cryptic species in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). J. Phycol.48: 1153–1165. Search in Google Scholar

Hagen, W. 2000. Lipids. In: (R.P. Harris, P.H. Wiebe, J. Lenz, H.R. Skjøldal and M. Huntley, eds.) ICES zooplankton methodology manual. Academic Press, San Diego, USA. pp. 113–119. Search in Google Scholar

Haye, P.A., N.I. Segovia, N.C. Muñoz-Herrera, F.E. Gálvez, A. Martínez, A. Meynard, M.C. Pardo-Gandarillas, E. Poulin and S. Faugeron. 2014. Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential. PLoS ONE. 9: e88613. Search in Google Scholar

Herbreteau, F., L.J.M. Coiffard, A. Derrien and Y. De Roeck-Holtzhauer. 1997. The fatty acid composition of five species of macroalgae. Bot. Mar. 40: 25–27. Search in Google Scholar

Hernández, K., B. Yannicelli, A. Montecinos, M. Ramos, H.E. González and G. Daneri. 2012. Temporal variability of incidental solar radiation and modulating factors in a coastal upwelling area (36°S). Prog. Oceanogr.9295: 18–32. Search in Google Scholar

Hormazabal, S., G. Shaffer and O. Leth. 2004. Coastal transition zone off Chile. J. Geophys. Res. 109: C01021. Search in Google Scholar

Jassby, A.D. and T. Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr.21: 540–547. Search in Google Scholar

Jones, C.G., J.H. Lawton and M. Shachak. 1994. Organisms as ecosystem engineers. Oikos.69: 373–386. Search in Google Scholar

Kattner, G. and H.S.G. Fricke. 1986. Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J. Chromatogr.361: 263–268. Search in Google Scholar

Khotimchenko, S.V. and I.M. Yakovleva. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry. 66: 73–79. Search in Google Scholar

Koivikko, R., J. Loponen, T. Honkanen and V. Jormalainen. 2005. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol. 31: 195–212. Search in Google Scholar

López-Cristoffanini, C., F. Tellier, R. Otaíza, J.A. Correa and L. Contreras-Porcia. 2013. Tolerance to air exposure: a feature driving the latitudinal distribution of two sibling kelp species. Bot. Mar.56: 431–440. Search in Google Scholar

Marquardt, R., H. Schubert, D.A. Varela, P. Huovinen, L. Henríquez and A.H. Buschmann. 2010. Light acclimation strategies of three commercially important red algal species. Aquaculture. 299: 140–148. Search in Google Scholar

Martínez, E.A. 1999. Latitudinal differences in thermal tolerance among microscopic sporophytes of the kelp Lessonia nigrescens (Phaeophyta: Laminariales). Pac. Sci.53: 74–81. Search in Google Scholar

Martínez, E.A., L. Cárdenas and R. Pinto. 2003. Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens (Phaeophyceae) 20 years after El Niño 1982/83. J. Phycol. 39: 505–508. Search in Google Scholar

Meneses, I. and B. Santelices. 2000. Patterns and breaking points in the distribution of benthic algae along the temperate Pacific coast of South America. Rev. Chil. Hist. Nat. 73: 615–623. Search in Google Scholar

Nelson, W.A. 2005. Life history and growth in culture of the endemic New Zealand kelp Lessonia variegata J. Agardh in response to differing regimes of temperature, photoperiod and light. J. Appl. Phycol.17: 23–28. Search in Google Scholar

Oppliger, L.V., J.A. Correa, S. Faugeron, J. Beltrán, F. Tellier, M. Valero and C. Destombe. 2011. Sex ratio variation in the Lessonia nigrescens complex (Laminariales, Phaeophyceae): effects of latitude, temperature, and marginality. J. Phycol.47: 5–12. Search in Google Scholar

Oppliger, L.V., J.A. Correa, A.H. Engelen, F. Tellier, V. Vieira, S. Faugeron, M. Valero, G. Gomez and C. Destombe. 2012. Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species. PLoS ONE.7: e39289. Search in Google Scholar

Pettitt, T.R., A.L. Jones and J.L. Harwood. 1989. Lipid metabolism in the marine red algae Chondrus crispus and Polysiphonia lanosa as modified by temperature. Phytochemistry. 28: 2053–2058. Search in Google Scholar

Pfündel, E. and W. Bilger. 1994. Regulation and possible function of the violaxanthin cycle. Photosynth. Res. 42: 89–109. Search in Google Scholar

Reiskind, J.B., S. Beer and G. Bowes. 1989. Photosynthesis, photorespiration and ecophysiological interactions in marine macroalgae. Aquat. Bot. 34: 131–152. Search in Google Scholar

Santelices, B. and F.P. Ojeda. 1984. Recruitment, growth and survival of Lessonia nigrescens (Phaeophyta) at various tidal levels in exposed habitats of central Chile. Mar. Ecol. Prog. Ser. 19: 73–82. Search in Google Scholar

Santelices, B., J.C. Castilla, J. Cancino and P. Schmiede. 1980. Comparative ecology of Lessonia nigrescens and Durvillaea antarctica (Phaeophyta) in Central Chile. Mar. Biol. 59: 119–132. Search in Google Scholar

Schreiber, U., W. Bilger and C. Neubauer. 1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. Ecol. Stud.100: 49–70. Search in Google Scholar

Searles, R.B. 1978. The genus Lessonia Bory (Phaeophyta, Laminariales) in Southern Chile and Argentina. Brit. Phycol. J. 13: 361–381. Search in Google Scholar

Smith, B.M. and A. Melis. 1987. Photosystem stoichiometry and excitation distribution in chloroplasts from surface and minus 20 meter blades of Macrocystis pyrifera, the giant kelp. Plant Physiol. 84: 1325–1330. Search in Google Scholar

Steneck, R.S., M.H. Graham, B.J. Bourque, D. Corbett, J.M. Erlandson, J.A. Estes and M.J. Tegner. 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv.29: 436–459. Search in Google Scholar

Tala, F. and M. Edding. 2007. First estimates of productivity in Lessonia trabeculata and Lessonia nigrescens (Phaeophyceae, Laminariales) from the southeast Pacific. Phycol. Res. 55: 66–79. Search in Google Scholar

Tapia, F.J., J.L. Largier, M.I. Castillo, E.A. Wieters and S.A. Navarrete. 2014. Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile. PLoS ONE. 9: e110841. Search in Google Scholar

Tellier, F., A.P. Meynard, J.A. Correa, S. Faugeron and M. Valero. 2009. Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol. Phylogenet. Evol.53: 679–693. Search in Google Scholar

Tellier, F., J. Tapia, S. Faugeron, C. Destombe and M. Valero. 2011a. The Lessonia nigrescens species complex (Laminariales, Phaeophyceae) shows strict parapatry and complete reproductive isolation in a secondary contact zone. J. Phycol.47: 894–903. Search in Google Scholar

Tellier, F., J.M.A. Vega, B.R. Broitman, J.A. Vásquez, M. Valero and S. Faugeron. 2011b. The importance of having two species instead of one in kelp management: the Lessonia nigrescens species complex. Cah. Biol. Mar.52: 455–465. Search in Google Scholar

Tellier, F., S. Faugeron and M. Valero. 2011c. Possible role of a mitochondrial genome rearrangement in maintaining the spatial segregation of two cryptic species of the Lessonia nigrescens species complex. Cah. Biol. Mar.52: 371–383. Search in Google Scholar

Thiel, M., E.C. Macaya, E. Acuña, W.E. Arntz, H. Bastias, K. Brokordt, P.A. Camus, J.C. Castilla, L.R. Castro, M. Cortés, C.P. Dumont, R. Escribano, M. Fernandez, J.A. Gajardo, C.F. Gaymer, I. Gomez, A.E. González, H.E. González, P.A. Haye, J-E. Illanes, J.L. Iriarte, D.A. Lancellotti, G. Luna-Jorquera, C. Luxoro, P.H. Manriquez, V. Marín, P. Muñoz, S.A. Navarrete, E. Perez, E. Poulin, J. Sellanes, H.H. Sepúlveda, W. Stotz, F. Tala, A. Thomas, C.A. Vargas, J.A. Vasquez and J.M.A. Vega. 2007. The Humboldt Current System of northern and central Chile. Oceanogr. Mar. Biol.45: 195–344. Search in Google Scholar

Vásquez, J.A. 2008. Production, use and fate of Chilean brown seaweeds: re-sources for a sustainable fishery. J. Appl. Phycol.20: 7–17. Search in Google Scholar

Villouta, E. and B. Santelices. 1984. Estructura de la comunidad submareal de Lessonia (Phaeophyta, Laminariales) en Chile norte y central. Rev. Chil. Hist. Nat.57: 111–122. Search in Google Scholar

Voisin, M., C.R. Engel and F. Viard. 2005. Differential shuffling of native genetic diversity across introduced regions in a brown alga: Aquaculture vs. maritime traffic effects. Proc. Nat. Acad. Sci. USA. 102: 5432–5437. Search in Google Scholar

Westermeier, R. and I. Gómez. 1996. Biomass, energy contents and major organic compounds in the brown alga Lessonia nigrescens (Laminariales, Phaeophyceae) from Mehuín, South Chile. Bot. Mar. 39: 553–559. Search in Google Scholar

Wheeler, W.N. 1980. Pigment content and photosynthetic rate of the fronds of Macrocystis pyrifera. Mar. Biol. 56: 97–102. Search in Google Scholar

Wright, S.W., S.W. Jeffrey, R.F.C. Mantoura, C.A. Llewellyn, T. Bjørnland, D. Repeta and N. Welschmeyer. 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser. 77: 183–196. Search in Google Scholar

Received: 2014-11-13
Accepted: 2015-2-17
Published Online: 2015-4-1
Published in Print: 2015-4-1

©2015 by De Gruyter