Abstract
The present study adds 19 species (15 Rhodophyta, one Chlorophyta and three Ochrophyta) to the Azorean marine macroalgal flora, increasing the current total of species recorded in this region to 521 (349 Rhodophyta, 76 Chlorophyta and 96 Ochrophyta), and showing that this isolated island group supports a relatively rich marine macroalgal flora. Some species fall within their known overall distributional range, whereas other found here represent a northern or southern extension to their known distribution in the Atlantic. Three species (Antithamnionella elegans, Gymnophycus hapsiphorus and Scytosiphon dotyi) are probable introductions to the Azores, whereas Melanothamnus pseudoforcipatus has an uncertain status. Six of the newly reported species were found as components of the intertidal algal turf samples, which justifies the need for continuing to examine turf samples as new discoveries can be anticipated.
Award Identifier / Grant number: M1420-09-5369-FSE-000002
Funding source: Xunta de Galicia
Award Identifier / Grant number: 03IN858A2019-1630129
Award Identifier / Grant number: ED481D/2017/011
Funding source: European Regional Development Fund
Award Identifier / Grant number: ACORES-01-0145-FEDER-000072
Funding source: Fundação para a Ciência e a Tecnologia
Award Identifier / Grant number: UID/BIA/00329/2013
Award Identifier / Grant number: UID/BIA/00329/2019
Award Identifier / Grant number: UID/BIA/00329/2020-2023
Funding source: Fundo Regional para a Ciência e Tecnologia
Award Identifier / Grant number: M3.1.a/F/083/2015
About the authors

Ana I. Neto was a professor at the University of Azores and since 1988 investigated marine botany and coastal ecology, using macroalgae as model organisms and the Azorean littoral communities as model systems. She was the lead scientist of the Island Aquatic Ecology SubGroup of the Azorean Biodiversity Group, and she coordinated the Herbarium AZB Ruy Telles Palhinha of DB/UAc which is an important resource for academics, students, government, private organizations, and the general public. She was actively involved in projects with regional enterprises, mainly in the areas of sustainable exploitation, biotechnology and aquaculture of marine resources. Sadly, Ana passed away in May 2021 after a whole life of valuable contributions to science.

Eva Cacabelos is a post-doctoral researcher and has extensive experience in the analysis of factors affecting littoral communities. She has participated in projects investigating the effects of invasions, climate change or anthropogenic perturbations in benthic communities, as well as related to valorization of marine resources. She is well acquainted with the methods of investigating effects of non-indigenous species in littoral systems.

Afonso C. L. Prestes is a PhD student of biology of the 3CBIO in the University of the Azores, studying the impact of invasive algae in the Azorean algal community. He has a research grant in the MIMAR + project for monitoring, control and mitigation of proliferations of marine organisms associated with human disturbances and climate change in the Macaronesian region. He has participated in several research projects involving, for instance, the implementation of the European Water Framework in the Azores archipelago.

Pilar Díaz-Tapia is a postdoctoral researcher interested in algal systematics, floristics and ecology. Her investigations using a combination of morphological and molecular approaches led to the description of several new species, the reassessment of the classification of red algal taxa and the improvement of our knowledge of the distribution of introduced algal species. A relevant number of her findings are related to the study of algal turfs, mainly from Europe and Australia.

Ignacio Moreu is a marine biologist that has been gaining considerable knowledge and experience in algal taxonomy and ecology. He shows significant experience in field sampling procedures, both at intertidal and subtidal levels. He has participated in projects involving biological invasions an anthropogenic impact on marine fauna and is nowadays gaining experience in aquaculture of marine organisms.
Acknowledgements
We thank Nuno V. Álvaro for the assistance with the images. In loving memory of Ana Neto.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This study is a contribution to the project AZORESBIOPORTAL–PORBIOTA (ACORES-01-0145-FEDER-000072) funded through FEDER (85%) and Regional funds (15%) via Operational Programme Azores 2020. Funding was also provided from National Funds through FCT-Fundação para a Ciência e a Tecnologia, under the projects UID/BIA/00329/2013, 2015–2018 and UID/BIA/00329/2019 and UID/BIA/00329/2020–2023. EC benefitted from a post-doctoral fellowship awarded by ARDITI (Regional Agency for Development of Research, Technology and Innovation of Madeira, Project M1420-09-5369-FSE-000002). ACLP was supported by PhD grant awarded by FRCT-Fundo Regional da Ciência e Tecnologia (M3.1.a/F/083/2015). PDT was supported by Xunta de Galicia ‘Axudas de apoio à etapa de formación posdoutoral’ (grant ED481D/2017/011) and ‘Talento Senior’ (grant 03IN858A2019-1630129).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Afonso Carrillo, J. and Sansón, M. (1999). Algas, hongos y fanerógamas marinas de las Islas Canarias. Clave analítica. La Laguna: Servicio de Publicaciones Universidad de la Laguna.Search in Google Scholar
Afonso-Carrillo, J., Gil-Rodríguez, M.C., Haroun, R., Balsa, M.V., and Wildpret de la Torre, W. (1984). Adiciones y correcciones al catálogo de algas marinas bentónicas para el archipiélago Canario. Vieraea 13: 27–49.Search in Google Scholar
Afonso-Carrillo, J., Sansón, M., Sangil, C., and Villa, T.V. (2007). New records of benthic marine algae from the Canary Islands (eastern Atlantic Ocean): morphology, taxonomy and distribution. Bot. Mar. 50: 119–127, https://doi.org/10.1515/bot.2007.014.Search in Google Scholar
Agardh, C.A. (1824). Systema algarum. Lund: Berling.10.5962/bhl.title.1829Search in Google Scholar
Agardh, C.A. (1828). Species algarum rite cognitae, cum synonymis, differentiis specificis et descriptionibus succinctis. Voluminis secundi. Sectio prior. Greifswald: Ernst Mauritius.Search in Google Scholar
Agardh, J.G. (1842). Algae maris Mediterranei et Adriatici, observationes in diagnosin specierum et dispositionem generum. Paris: Apud Fortin, Masson et Cie.10.5962/bhl.title.44885Search in Google Scholar
Agardh, J.G. (1851). Species genera et ordines algarum, seu descriptiones succinctae specierum, generum et ordinum, quibus algarum regnum constituitur. Volumen secundum: algas florideas complectens. Part 1. Lund: C.W.K. Gleerup.Search in Google Scholar
Agardh, J.G. (1863). Species genera et ordines algarum, seu descriptiones succinctae specierum, generum et ordinum, quibus algarum regnum constituitur. Volumen secundum: algas florideas complectens. Part 2. Lundae: C.W.K. Gleerup.Search in Google Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403–410, https://doi.org/10.1016/s0022-2836(05)80360-2.Search in Google Scholar
Barrientos, S., Barreiro, R., Cremades, J., and Piñeiro-Corbeira, C. (2020). Setting the basis for a long-term monitoring network of intertidal seaweed assemblages in northwest Spain. Mar. Environ. Res. 160: 105039, https://doi.org/10.1016/j.marenvres.2020.105039.Search in Google Scholar PubMed
Berthold, G. (1882). Über die Vertheilung der Algen im Golf von Neapel nebst einem Verzeichnis der bisher daselbst beobachteten Arten. Mittheilungen aus der Zoologischen Station zu Neapal 3: 393–536.Search in Google Scholar
Bridsen, D. and Forman, L. (1999). The herbarium handbook, 3rd ed. Kew: The Board of Trustees of the Royal Botanic Gardens. Royal Botanic Gardens Kew, Kew.Search in Google Scholar
Cardigos, F., Tempera, F., Ávila, S.P., Gonçalves, J., Colaço, A., and Santos, R.S. (2006). Nonindigenous marine species of the Azores. Helgol. Mar. Res. 60: 160–169, https://doi.org/10.1007/s10152-006-0034-7.Search in Google Scholar
Cassano, V., Gil-Rodríguez, M.C., Sentíes, A., and Fujii, M.T. (2008). Laurencia caduciramulosa (Ceramiales, Rhodophyta) from the Canary Islands, Spain: a new record for the eastern Atlantic Ocean. Bot. Mar. 51: 156–158, https://doi.org/10.1515/bot.2008.021.Search in Google Scholar
Clarke, A. (2003). Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18: 573–581, https://doi.org/10.1016/j.tree.2003.08.007.Search in Google Scholar
Díaz-Tapia, P. and Bárbara, I. (2011). Sexual structures in Ptilothamnion sphaericum and Pterosiphonia complanata (Ceramiales, Rhodophyta) from the Atlantic Iberian Peninsula. Bot. Mar. 54: 35–46, https://doi.org/10.1515/bot.2011.002.Search in Google Scholar
Díaz-Tapia, P. and Bárbara, I. (2013). Seaweeds from sand-covered rocks of the Atlantic Iberian Peninsula. Part. 1. The Rhodomelaceae (Ceramiales, Rhodophyta). Cryptogam. Algol. 34: 325–422, https://doi.org/10.7872/crya.v34.iss4.2013.325.Search in Google Scholar
Díaz Tapia, P. and Bárbara, I. (2014). Seaweeds from sand-covered rocks of the Atlantic Iberian Peninsula. Part 2. Palmariales, Ceramiales (excluding Rhodomelaceae), Gelidiales, Gigartinales, Plocamiales, Rhodymeniales and Scytothamniales. Cryptogam. Algol. 35: 157–199, https://doi.org/10.7872/crya.v35.iss2.2014.157.Search in Google Scholar
Díaz-Tapia, P., Bárbara, I., Cremades, J., Verbruggen, H., and Maggs, C.A. (2017). Three new cryptogenic species in the tribes Polysiphonieae and Streblocladieae (Rhodomelaceae, Rhodophyta). Phycologia 56: 605–623, https://doi.org/10.2216/17-17.1.Search in Google Scholar
Díaz-Tapia, P., Maggs, C.A., Macaya, E.C., and Verbruggen, H. (2018). Widely distributed red algae often represent hidden introductions, complexes of cryptic species or species with strong phylogeographic structure. J. Phycol. 54: 829–839, https://doi.org/10.1111/jpy.12778.Search in Google Scholar PubMed
Díaz-Tapia, P., Ly, M., and Verbruggen, H. (2020a). Extensive cryptic diversity in the widely distributed Polysiphonia scopulorum (Rhodomelaceae, Rhodophyta): molecular species delimitation and morphometric analyses. Mol. Phylogenet. Evol. 152: 106909, https://doi.org/10.1016/j.ympev.2020.106909.Search in Google Scholar PubMed
Díaz-Tapia, P., Maggs, C.A., Nelson, W., Macaya, E.C., and Verbruggen, H. (2020b). Reassessment of the genus Lophurella (Rhodomelaceae, Rhodophyta) from Australia and New Zealand reveals four cryptic species. Eur. J. Phycol. 55: 113–128, https://doi.org/10.1080/09670262.2019.1659419.Search in Google Scholar
Díaz-Tapia, P., Muñoz-Luque, L., Piñeiro-Corbeira, C., and Maggs, C.A. (2021). Phylogenetic analyses of Macaronesian turf-forming species reveal cryptic diversity and resolve Stichothamnion in the Vertebrata clade (Rhodomelaceae, Rhodophyta). Eur. J. Phycol. 56: 444–454, https://doi.org/10.1080/09670262.2021.1871969.Search in Google Scholar
Dillwyn, L.W. (1809). British Confervae; or colored figures and descriptions of the British plants referred by botanists to the genus Conferva. London: W. Phillips.10.5962/bhl.title.2189Search in Google Scholar
Dixon, P.S. and Irvine, L.M. (1977). Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 1. Introduction, Nemaliales, Gigartinales. London: British Museum (Natural History).Search in Google Scholar
Ferreira, S., Kaufmann, M., Neto, A.I., Izaguirre, J.P., Wirtz, P., and De Clerck, O. (2012). New records of macroalgae from Madeira Archipelago. In: Sequeira, M.M., Gouveia, M., Pupo, A., Ferreira, M.Z., Jardim, R., Góis-Marques, C., Silva, L., Moura, M., Neto, A.I., Elias, R., et al.. (Eds.), International symposium FloraMac2012. Funchal, Madeira, Portugal: Abstract Book, p. 60.Search in Google Scholar
Freitas, R., Romeiras, M., Silva, L., Cordeiro, R., Madeira, P., González, J.A., Wirtz, P., Falcón, J.M., Brito, A., Floeter, S.R., et al.. (2019). Restructuring of the ‘Macaronesia’ biogeographic unit: a marine multi-taxon biogeographical approach. Sci. Rep. 9: 15792, https://doi.org/10.1038/s41598-019-51786-6.Search in Google Scholar PubMed PubMed Central
Gepp, A. and Gepp, E.S. (1911). The Codiaceae of the Siboga Expedition including a monograph of Flabellarieae and Udoteae Siboga-Expeditie Monographie. Leiden: E.J. Brill.Search in Google Scholar
Guiry, M.D. and Guiry, G.M. (2021). AlgaeBase. Galway: World-wide Electronic Publication, National University of Ireland, https://www.algaebase.org. searched on December 2021.Search in Google Scholar
Hidrográfico, I. (1981). Roteiro do Arquipélago dos Açores. Lisboa: O Instituto. PUB. (N) -lli-128-SN.Search in Google Scholar
Hoshino, M., Tanaka, A., Kamiya, M., Uwai, S., Hiraoka, M., and Kogame, K. (2021). Systematics, distribution, and sexual compatibility of six Scytosiphon species (Scytosiphonaceae, Phaeophyceae) from Japan and the description of four new species. J. Phycol. 57: 416–434, https://doi.org/10.1111/jpy.13089.Search in Google Scholar PubMed
Huisman, J.M. and Kraft, G.T. (1983). Gymnophycus, a new genus of Ceramiaceae (Rhodophyta) from eastern Australia. Phycologia 22: 285–294, https://doi.org/10.2216/i0031-8884-22-3-285.1.Search in Google Scholar
Huisman, J.M., Kim, B., and Kim, M.S. (2017). The phylogenetic position of Polysiphonia scopulorum (Rhodomelaceae, Rhodophyta) based on molecular analyses and morphological observations of specimens from the type locality in Western Australia. Phytotaxa 324: 51–62, https://doi.org/10.11646/phytotaxa.324.1.3.Search in Google Scholar
Jesus, P.B.de., Costa, A.L., Nunes, J.M.C., Manghisi, A., Genovese, G., Morabito, M., and Schnadelbach, A.S. (2019). Species delimitation methods reveal cryptic diversity in the Hypnea cornuta complex (Cystocloniaceae, Rhodophyta). Eur. J. Phycol. 54: 135–153, https://doi.org/10.1080/09670262.2018.1522454.Search in Google Scholar
Lima, F.P., Ribeiro, P.A., Queiroz, N., Hawkins, S.J., and Santos, A.M. (2007). Do distributional shifts of northern and southern species of algae match the warming pattern? Global Change Biol. 13: 2592–2604, https://doi.org/10.1111/j.1365-2486.2007.01451.x.Search in Google Scholar
Lüning, K. (1990). Seaweeds: Their environment, biogeography and ecophysiology. New York: Wiley.Search in Google Scholar
Maggs, C.A. and Hommersand, M.H. (1993). Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 3A. Ceramiales. London: HMSO.Search in Google Scholar
Mamoozadeh, N.R. and Freshwater, D.W. (2011). Taxonomic notes on Caribbean Neosiphonia and Polysiphonia (Ceramiales, Florideophyceae): five species from Florida, USA and Mexico. Bot. Mar. 54: 269–292, https://doi.org/10.1515/bot.2011.036.Search in Google Scholar
Nauer, F., Cassano, V., and Oliveira, M.C. (2015). Description of Hypnea pseudomusciformis sp. nov., a new species based on molecular and morphological analyses, in the context of the H. musciformis complex (Gigartinales, Rhodophyta). J. Appl. Phycol. 27: 2405–2417, https://doi.org/10.1007/s10811-014-0488-y.Search in Google Scholar
Neto, A.I. (2001). Macroalgal species diversity and biomass of subtidal communities of São Miguel (Azores). Helgol. Mar. Res. 55: 101–111, https://doi.org/10.1007/s101520100074.Search in Google Scholar
Neto, A.I., Tittley, I., and Raposeiro, P.M. (2005). Flora Marinha do Litoral dos Açores. Açores: Secretaria Regional do Ambiente e do Mar. Horta.Search in Google Scholar
Neto, A.I., Parente, M.I., Botelho, A.Z., Prestes, A.C.L., Resendes, R., Álvaro, N.V., Milla-Figueras, D., Neto, R.M.A., Tittley, I., and Moreu, I. (2020a). Marine algal flora of Graciosa Island, Azores. Biodivers. Data J. 8: e57201, https://doi.org/10.3897/BDJ.8.e57201.Search in Google Scholar PubMed PubMed Central
Neto, A.I., Prestes, A.C.L., Álvaro, N.V., Resendes, R., Neto, R.M.A., Tittley, I., and Moreu, I. (2020b). Marine algal flora of Pico Island, Azores. Biodivers. Data J. 8: e57461, https://doi.org/10.3897/BDJ.8.e57461.Search in Google Scholar PubMed PubMed Central
Neto, A.I., Prestes, A.C.L., Álvaro, N.V., Resendes, R., Neto, R.M.A., and Moreu, I. (2020c). Marine algal flora of Formigas Islets. Azores. Biodivers. Data J. 8: e57510, https://doi.org/10.3897/BDJ.8.e57510.Search in Google Scholar PubMed PubMed Central
Neto, A.I., Prestes, A.C.L., Resendes, R., Neto, R.M.A., and Moreu, I. (2020d). Marine algal (seaweed) flora of Faial island, Azores. Dataset/Sampling event. Faial, Azores, Portugal: Universidade dos Açores.10.3897/BDJ.8.e57462Search in Google Scholar PubMed PubMed Central
Neto, A.I., Prestes, A.C.L., Álvaro, N.V., Resendes, R., Neto, R.M.A., and Moreu, I. (2020e). Marine algal (seaweed) flora of Terceira Island, Azores. Biodivers. Data J. 8: e57462, https://doi.org/10.3897/BDJ.8.e57462.Search in Google Scholar
Neto, A.I., Prestes, A.C.L., Resendes, R., Neto, R.M.A., and Moreu, I. (2020f). Marine algal (seaweed) flora of São Jorge island, Azores. Dataset/Sampling event. São Jorge, Azores, Portugal: Universidade dos Açores.10.3897/BDJ.8.e57462Search in Google Scholar
Neto, A.I., Moreu, I., Rosas-Alquicira, E.F., León-Cisneros, K., Cacabelos, E., Botelho, A.Z., Micael, J., Costa, A.C., Neto, R.M.A., Azevedo, J.M.N., et al.. (2021a). Marine algal flora of São Miguel island, Azores. Dataset/Sampling event, v1.3. São Miguel, Azores, Portugal: Universidade dos Açores.10.3897/BDJ.9.e64969Search in Google Scholar PubMed PubMed Central
Neto, A.I., Parente, M.I., Cacabelos, E., Costa, A.C., Botelho, A.Z., Ballesteros, E., Monteiro, S., Resendes, R., Afonso, P., Afonso, C.L.P., et al.. (2021b). Marine algal flora of Santa Maria Island, Azores. Biodivers. Data J. 9: e61909.10.3897/BDJ.9.e61909Search in Google Scholar PubMed PubMed Central
Neto, A.I., Parente, M.I., Tittley, I., Fletcher, R.L., Farnham, W.F., Costa, A.C., Botelho, A.Z., Monteiro, S., Resendes, R., Afonso, P., et al.. (2021c). Marine algal flora of Flores and Corvo Islands, Azores. Biodivers. Data J. 9: e60929.10.3897/BDJ.9.e60929Search in Google Scholar PubMed PubMed Central
Osland, M.J., Stevens, P.W., Lamont, M.M., Brusca, R.C., Hart, K.M., Waddle, J.H., Brusca, R.C., Hart, K.M., Waddle, J.H., Langtimm, C.A., et al.. (2021). Tropicalization of temperate ecosystems in North America: the northward range expansion of tropical organisms in response to warming winter temperatures. Global Change Biol. 27: 3009–3034, https://doi.org/10.1111/gcb.15563.Search in Google Scholar PubMed
Pallas, P.S. (1766). Miscellanea zoologica quibus novae imprimis atque obscurae animalium species describuntur et observationibus iconibusque illustrantur. Hagae Comitum: Apud Petrum van Cleef.10.5962/bhl.title.69851Search in Google Scholar
Piñeiro-Corbeira, C., Verbruggen, H., and Díaz-Tapia, P. (2020). Molecular survey of the red algal family Rhodomelaceae (Ceramiales, Rhodophyta) in Australia reveals new introduced species. J. Appl. Phycol. 32: 2535–2547, https://doi.org/10.1007/s10811-019-01932-4.Search in Google Scholar
Prud’homme van Reine, W.F. (1998). Seaweeds and biogeography in the macaronesian Region. Bolm. Mus. munic. Funchal Supl. 5B: 307–331.Search in Google Scholar
Prud’homme van Reine, W.F. and van den Hoek, C. (1990). Biogeography of macaronesian seaweeds. Cour. Forschungsinst. Senckenberg 129: 55–73.Search in Google Scholar
Ribeiro, C., Neto, A.I., Moreu, I., Haroun, R., and Neves, P. (2019). A new signal of marine tropicalization in the Macaronesia region: first record of the mesophotic macroalga Avrainvillea canariensis. A. Gepp and E. S. Gepp in the Madeira archipelago. Aquat. Bot. 153: 40–43, https://doi.org/10.1016/j.aquabot.2018.11.008.Search in Google Scholar
Rindi, F., Gabio, B., Díaz-Tapia, P., Camilo, D., and Romagnoli, T. (2020). Long-term changes in the benthic macroalgal flora of a coastal area affected by urban impacts (Conero Riviera, Mediterranean Sea). Biodivers. Conserv. 29: 2275–2295, https://doi.org/10.1007/s10531-020-01973-z.Search in Google Scholar
Rodríguez-Buján, I., Pimentel, M., and Díaz-Tapia, P. (2021). Melanothamnus macaronesicus sp. nov. (Rhodomelaceae, Rhodophyta): a new turf-forming species from the Azores and the Canary Islands. Cryptogam. Algol. 42: 77–91, https://doi.org/10.5252/cryptogamie-algologie2021v42a7.Search in Google Scholar
Rodríguez-Prieto, C., Ballesteros, E., Boisset, F., and Afonso-Carrillo, J. (2013). Guía de las macroalgas y fanerógamas marinas del Mediterráneo Occidental. Barcelona: Ediciones Omega.Search in Google Scholar
Roxas Clemente y Rubio, S.de. (1807). Ensayo sobre las variedades de la vid comun que vegetan en Andalucía, con un índice etimológico y tres listas de plantas en que se caracterizan varias especies nuevas, por Don Simon de Roxas Clemente y Rubio. Madrid: Imprenta de Villalpando.Search in Google Scholar
Savoie, A.M. and Saunders, G.W. (2019). A molecular assessment of species diversity and generic boundaries in the red algal tribes Polysiphonieae and Streblocladieae (Rhodomelaceae, Rhodophyta) in Canada. Eur. J. Phycol. 54: 1–25, https://doi.org/10.1080/09670262.2018.1483531.Search in Google Scholar
Schneider, C.W. and Searles, R.B. (1991). Seaweeds of the southeastern United States. Cape Hatteras to Cape Canaveral. Durham and London: Duke University Press.10.1515/9780822397984Search in Google Scholar
Seubert, M. and Hochstetter, C. (1843). Übersicht der Flora der azorischen Inseln. Arch. Naturgesch. 9: 1–24.Search in Google Scholar
Silva, P.C., Basson, P.W., and Moe, R.L. (1996). Catalogue of the benthic marine algae of the Indian Ocean. Univ. Calif. Publ. Bot. 79: 1–1259.Search in Google Scholar
Soler-Onis, E., Haroun, R.J., Viera-Rodríguez, A., and Prud’homme van Reine, W.F. (1995). Sebdenia canariensis sp. nov. (Sebdeniaceae, Gigartinales, Rhodophyta), una nueva alga roja de profundidad del Archipielago Canario. In: XI simposio Nacional de Botanica Criptogámica, Resumenes de comunicaciones. Santiago de Compostela: Sociedad Española de Ficología.Search in Google Scholar
Taşkın, E. (2012). First report of the alien brown alga Scytosiphon dotyi MJ Wynne (Phaeophyceae, Scytosiphonaceae) in Turkey. Mediterr. Mar. Sci. 13: 33–35, https://doi.org/10.12681/mms.21.Search in Google Scholar
Thomsen, M.S., Wernberg, T., South, P.M., and Schiel, D.R. (2016). Non-native seaweeds drive changes in marine coastal communities around the world. In: Hu, Z.M., and Fraser, C.I. (Eds.), Seaweed phylogeography. Dordrecht: Springer, pp. 147–185, https://doi.org/10.1007/978-94-017-7534-2_6.Search in Google Scholar
Tittley, I. (2003). Seaweed diversity in the North Atlantic Ocean. Arquipélago Life Marine Science 19A: 13–25.Search in Google Scholar
Tittley, I. and Neto, A.I. (1995). The marine algal flora of the Azores and its biogeographical affinities. Boletim do Museu Municípal do Funchal Suplemento 4: 747–766.Search in Google Scholar
Tittley, I. and Neto, A.I. (2005). The marine algal (Seaweed) flora of the Azores: additions and amendments. Bot. Mar. 48: 248–255, https://doi.org/10.1515/bot.2005.030.Search in Google Scholar
Tittley, I. and Neto, A.I. (2006). The marine algal flora of the Azores: island isolation or Atlantic steppingstones. Occasional Publication of the Irish Biogeographical Society 9: 40–54.Search in Google Scholar
Tsiamis, K. and Verlaque, M. (2011). A new contribution to the alien red macroalgal flora of Greece (Eastern Mediterranean) with emphasis on Hypnea species. Cryptogam. Algol. 32: 393–410, https://doi.org/10.7872/crya.v32.iss4.2011.393.Search in Google Scholar
Turner, D. (1809). Fuci sive plantarum fucorum generi a botanicis ascriptarum icones descriptiones et historia. Fuci, or coloured figures and descriptions of the plants referred by botanists to the genus Fucus, Vol. II. London: Typis J. M’Creery, impensis J. et A. Arch.Search in Google Scholar
Tuya, F. and Haroun, R.J. (2006). Spatial patterns and response to wave exposure of photophilic algal assemblages across the Canarian Archipelago: a multiscaled approach. Mar. Ecol. Prog. Ser. 311: 15–28, https://doi.org/10.3354/meps311015.Search in Google Scholar
Tuya, F. and Haroun, R.J. (2009). Phytogeography of Lusitanian Macaronesia: biogeographic affinities in species richness and assemblage composition. Eur. J. Phycol. 44: 405–413, https://doi.org/10.1080/09670260902836246.Search in Google Scholar
Verlaque, M., Ruitton, S., Mineur, F., and Boudouresque, C.-F. (2015). CIESM atlas of exotic species of the Mediterranean. Macrophytes. Monaco: CIESM Publishers.Search in Google Scholar
Vergés, A., Steinberg, P.D., Hay, M.E., Poore, A.G., Campbell, A.H., Ballesteros, E., Heck, K.L.Jr, Booth, D.J., Coleman, M.A., et al.. (2014). The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. Royal Soc. B 281: 20140846, https://doi.org/10.1098/rspb.2014.0846.Search in Google Scholar PubMed PubMed Central
Wallenstein, F.M., Neto, A.I., Álvaro, N.V., Tittley, I., and Azevedo, J.M.N. (2009a). Guia para Definição de Biótopos Costeiros em Ilhas Oceânicas. Faial: Secretaria Regional do Ambiente e do Mar.Search in Google Scholar
Wallenstein, F.M., Terra, M.R., Pombo, J., and Neto, A.I. (2009b). Macroalgal turfs in the Azores. Mar. Ecol.- Evol. Persp. 30: 113–117, https://doi.org/10.1111/j.1439-0485.2009.00311.x.Search in Google Scholar
Williams, S.L. and Smith, J.E. (2007). A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu. Rev. Ecol. Evol. Syst. 38: 327–359, https://doi.org/10.1146/annurev.ecolsys.38.091206.095543.Search in Google Scholar
Wynne, M.J. (1969). Life history and systematic studies of some Pacific North American Phaeophyceae (brown algae). Univ. Calif. Publ. Bot. 50: 1–88.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/bot-2021-0085).
© 2022 Walter de Gruyter GmbH, Berlin/Boston