Zum Hauptinhalt springen
Lizenziert Nicht lizenziert Erfordert eine Authentifizierung Veröffentlicht von De Gruyter 19. Februar 2018

Laboratory hemostasis: from biology to the bench

Giuseppe Lippi ORCID logo EMAIL logo und Emmanuel J. Favaloro

Abstract

Physiological hemostasis is an intricate biological system, where procoagulant and anticoagulant forces interplay and preserves blood fluidity when blood vessels are intact, or trigger clot formation to prevent excessive bleeding when blood vessels are injured. The modern model of hemostasis is divided into two principal phases. The first, defined as primary hemostasis, involves the platelet-vessel interplay, whilst the second, defined as secondary hemostasis, mainly involves coagulation factors, damaged cells and platelet surfaces, where the so-called coagulation cascade rapidly develops. The activation and amplification of the coagulation cascade is finely modulated by the activity of several physiological inhibitors. Once bleeding has been efficiently stopped by blood clot formation, dissolution of the thrombus is essential to restore vessel permeability. This process, known as fibrinolysis, also develops through coordinate action of a vast array of proteins and enzymes. An accurate diagnosis of hemostasis disturbance entails a multifaceted approach, encompassing family and personal history of hemostatic disorders, accurate collection of clinical signs and symptoms, integrated with laboratory hemostasis testing. Regarding laboratory testing, a reasonable approach entails classifying hemostasis testing according to cost, complexity and available clinical information. Laboratory workout may hence initiate with some rapid and inexpensive “screening” tests, characterized by high negative predictive value, then followed by second- or third-line analyses, specifically aimed to clarify the nature and severity of bleeding or thrombotic phenotype. This article aims to provide a general overview of the hemostatic process, and to provide some general suggestions to optimally facilitate laboratory hemostasis testing.


Corresponding author: Prof. Giuseppe Lippi, Section of Clinical Biochemistry, University Hospital of Verona, Piazzale LA Scuro, 37100 – Verona, Italy, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Lippi G, Favaloro EJ. Laboratory hemostasis: milestones in clinical chemistry and laboratory medicine. Clin Chem Lab Med 2013;51:91–7.10.1515/cclm-2012-0387Suche in Google Scholar PubMed

2. Bonar RA, Lippi G, Favaloro EJ. Overview of hemostasis and thrombosis and contribution of laboratory testing to diagnosis and management of hemostasis and thrombosis disorders. Methods Mol Biol 2017;1646:3–27.10.1007/978-1-4939-7196-1_1Suche in Google Scholar PubMed

3. Gale AJ. Continuing education course #2: current understanding of hemostasis. Toxicol Pathol 2011;39:273–80.10.1177/0192623310389474Suche in Google Scholar PubMed PubMed Central

4. Arbelaez A, Niemann J, Freney R, Othman M, Emsley J, Mohammed S, et al. “Bleeding in the jungle”. Am J Hematol 2015;90:843–6.10.1002/ajh.24032Suche in Google Scholar PubMed

5. Curnow J, Pasalic L, Favaloro EJ. Treatment of von Willebrand disease. Semin Thromb Hemost 2016;42:133–46.10.1055/s-0035-1569070Suche in Google Scholar PubMed

6. Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord 2015;15:130.10.1186/s12872-015-0124-zSuche in Google Scholar PubMed PubMed Central

7. Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev 2011;25: 155–67.10.1016/j.blre.2011.03.002Suche in Google Scholar PubMed

8. Lippi G, Franchini M, Targher G. Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol 2011;8:502–12.10.1038/nrcardio.2011.91Suche in Google Scholar PubMed

9. Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev 2013;93:327–58.10.1152/physrev.00016.2011Suche in Google Scholar PubMed

10. Lippi G, Franchini M, Guidi GC. Diagnostic approach to inherited bleeding disorders. Clin Chem Lab Med 2007;45:2–12.10.1515/CCLM.2007.006Suche in Google Scholar PubMed

11. McVey JH. The role of the tissue factor pathway in haemostasis and beyond. Curr Opin Hematol 2016;23:453–61.10.1097/MOH.0000000000000268Suche in Google Scholar PubMed

12. Schroeder V, Kohler HP. Factor XIII: structure and function. Semin Thromb Hemost 2016;42:422–8.10.1055/s-0036-1571341Suche in Google Scholar PubMed

13. Favaloro EJ. Optimizing the verification of mean normal prothrombin time (MNPT) and international sensitivity index (ISI) for accurate conversion of prothrombin time (PT) to international normalized ratio (INR). Methods Mol Biol 2017;1646:59–74.10.1007/978-1-4939-7196-1_4Suche in Google Scholar PubMed

14. Leiderman K, Chang WC, Ovanesov M, Fogelson AL. Synergy between tissue factor and exogenous factor XIa in initiating coagulation. Arterioscler Thromb Vasc Biol 2016;36:2334–45.10.1161/ATVBAHA.116.308186Suche in Google Scholar PubMed PubMed Central

15. Mohammed BM, Matafonov A, Ivanov I, Sun MF, Cheng Q, Dickeson SK, et al. An update on factor XI structure and function. Thromb Res 2017;161:94–105.10.1016/j.thromres.2017.10.008Suche in Google Scholar PubMed PubMed Central

16. Smith SA, Travers RJ, Morrissey JH. How it all starts: Initiation of the clotting cascade. Crit Rev Biochem Mol Biol 2015;50: 326–36.10.3109/10409238.2015.1050550Suche in Google Scholar PubMed PubMed Central

17. Kershaw G. Performance of activated partial thromboplastin time (APTT): determining reagent sensitivity to factor deficiencies, heparin, and lupus anticoagulants. Methods Mol Biol 2017;1646:75–83.10.1007/978-1-4939-7196-1_5Suche in Google Scholar PubMed

18. Danese E, Montagnana M, Lippi G. Factor XII in hemostasis and thrombosis: active player or (Innocent) bystander? Semin Thromb Hemost 2016;42:682–8.10.1055/s-0036-1571338Suche in Google Scholar PubMed

19. Lippi G, Franchini M, Brazzarola P, Manzato F. Preoperative screening: the rationale of measuring APTT in risk assessment. Haematologica 2001;86:328.Suche in Google Scholar

20. Undas A. Determination of fibrinogen and thrombin time (TT). Methods Mol Biol 2017;1646:105–10.10.1007/978-1-4939-7196-1_8Suche in Google Scholar PubMed

21. Undas A. How to assess fibrinogen levels and fibrin clot properties in clinical practice? Semin Thromb Hemost 2016;42:381–8.10.1055/s-0036-1579636Suche in Google Scholar PubMed

22. Montagnana M, Lippi G, Danese E. An overview of thrombophilia and associated laboratory testing. Methods Mol Biol 2017;1646:113–35.10.1007/978-1-4939-7196-1_9Suche in Google Scholar

23. Quinsey NS, Greedy AL, Bottomley SP, Whisstock JC, Pike RN. Antithrombin: in control of coagulation. Int J Biochem Cell Biol 2004;36:386–9.10.1016/S1357-2725(03)00244-9Suche in Google Scholar

24. Marlar RA, Gausman JN. Assessment of hereditary thrombophilia: performance of protein C (PC) testing. Methods Mol Biol 2017;1646:145–51.10.1007/978-1-4939-7196-1_11Suche in Google Scholar

25. Marlar RA, Gausman JN. Assessment of hereditary thrombophilia: performance of protein S (PS) testing. Methods Mol Biol 2017;1646:153–60.10.1007/978-1-4939-7196-1_12Suche in Google Scholar

26. Mohammed S, Favaloro EJ. Laboratory testing for activated protein C resistance (APCR). Methods Mol Biol 2017;1646:137–43.10.1007/978-1-4939-7196-1_10Suche in Google Scholar

27. Wood JP, Ellery PE, Maroney SA, Mast AE. Biology of tissue factor pathway inhibitor. Blood 2014;123:2934–43.10.1182/blood-2013-11-512764Suche in Google Scholar

28. Lippi G, Pasalic L, Favaloro EJ. Detection of mild inherited disorders of blood coagulation: current options and personal recommendations. Expert Rev Hematol 2015;8:527–42.10.1586/17474086.2015.1039978Suche in Google Scholar

29. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 2015;29:17–24.10.1016/j.blre.2014.09.003Suche in Google Scholar

30. Longstaff C, Adcock D, Olson JD, Jennings I, Kitchen S, Mutch N, et al. Harmonisation of D-dimer – A call for action. Thromb Res 2016;137:219–20.10.1016/j.thromres.2015.11.031Suche in Google Scholar

31. Favaloro EJ, Lippi G. Coagulation update: what’s new in hemostasis testing? Thromb Res 2011;127 Suppl 2:S13–6.10.1016/S0049-3848(10)70148-1Suche in Google Scholar

32. Lippi G, Franchini M, Favaloro EJ. Diagnostics of inherited bleeding disorders of secondary hemostasis: an easy guide for routine clinical laboratories. Semin Thromb Hemost 2016;42: 471–7.10.1055/s-0036-1571311Suche in Google Scholar PubMed

33. Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography (TEG) or rotational thromboelastometry (ROTEM) to monitor haemostatic treatment in bleeding patients: a systematic review with meta-analysis and trial sequential analysis. Anaesthesia 2017;72:519–31.10.1097/01.sa.0000527520.69138.8aSuche in Google Scholar

34. Salvagno GL, Berntorp E. Thrombin generation assays (TGAs). Methods Mol Biol 2017;1646:515–22.10.1007/978-1-4939-7196-1_37Suche in Google Scholar PubMed

35. Curnow J. The overall hemostatic potential (OHP) assay. Methods Mol Biol 2017;1646:523–31.10.1007/978-1-4939-7196-1_38Suche in Google Scholar PubMed

36. Swystun LL, James P. Using genetic diagnostics in hemophilia and von Willebrand disease. Hematology Am Soc Hematol Educ Program 2015;2015:152–9.10.1182/asheducation-2015.1.152Suche in Google Scholar PubMed

37. Lippi G, Danese E, Favaloro EJ, Montagnana M, Franchini M. Diagnostics in venous thromboembolism: from origin to future prospects. Semin Thromb Hemost 2015;41:374–81.10.1055/s-0034-1544003Suche in Google Scholar PubMed

38. Thachil J, Lippi G, Favaloro EJ. D-Dimer testing: laboratory aspects and current issues. Methods Mol Biol 2017;1646:91–104.10.1007/978-1-4939-7196-1_7Suche in Google Scholar PubMed

39. Wada H, Matsumoto T, Yamashita Y. Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines. J Intensive Care 2014;2:15.10.1186/2052-0492-2-15Suche in Google Scholar PubMed PubMed Central

40. Moll S. Thrombophilia: clinical-practical aspects. J Thromb Thrombolysis 2015;39:367–78.10.1007/s11239-015-1197-3Suche in Google Scholar PubMed

41. Stevens SM, Woller SC, Bauer KA, Kasthuri R, Cushman M, Streiff M, et al. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J Thromb Thrombolysis 2016;41:154–64.10.1007/s11239-015-1316-1Suche in Google Scholar PubMed PubMed Central

42. Lippi G, Mattiuzzi C, Cervellin G, Favaloro EJ. Direct oral anticoagulants: analysis of worldwide use and popularity using Google Trends. Ann Transl Med 2017;5:322.10.21037/atm.2017.06.65Suche in Google Scholar PubMed PubMed Central

43. Lippi G, Favaloro EJ. Recent guidelines and recommendations for laboratory assessment of the direct oral anticoagulants (DOACs): is there consensus? Clin Chem Lab Med 2015;53:185–97.10.1515/cclm-2014-0767Suche in Google Scholar PubMed

44. Favaloro EJ, Pasalic L, Curnow J, Lippi G. Laboratory monitoring or measurement of direct oral anticoagulants (DOACs): advantages, limitations and future challenges. Curr Drug Metab 2017;18:598–608.10.2174/1389200218666170417124035Suche in Google Scholar PubMed

45. Adcock DM, Gosselin RC. Laboratory assessment of hemostatic and anticoagulant therapy. Semin Thromb Hemost 2017;43:242–4.10.1055/s-0037-1601051Suche in Google Scholar PubMed

46. Clerico A, Zaninotto M, Ripoli A, Masotti S, Prontera C, Passino C, et al. The 99th percentile of reference population for cTnI and cTnT assay: methodology, pathophysiology and clinical implications. Clin Chem Lab Med 2017;55:1634–51.10.1515/cclm-2016-0933Suche in Google Scholar PubMed

47. Lippi G, Favaloro EJ. Venous and arterial thromboses: two sides of the same coin? Semin Thromb Hemost 2017 Sep 25. doi: 10.1055/s-0037-1607202. [Epub ahead of print].10.1055/s-0037-1607202Suche in Google Scholar PubMed

48. Favaloro EJ, Lippi G. Laboratory testing in the era of direct or non-vitamin K antagonist oral anticoagulants: a practical guide to measuring their activity and avoiding diagnostic errors. Semin Thromb Hemost 2015;41:208–27.10.1055/s-0035-1546827Suche in Google Scholar PubMed

49. Sambu N, Curzen N. Monitoring the effectiveness of antiplatelet therapy: opportunities and limitations. Br J Clin Pharmacol 2011;72:683–96.10.1111/j.1365-2125.2011.03955.xSuche in Google Scholar PubMed PubMed Central

50. Jovanovic L, Antonijevic N, Novakovic T, Savic N, Terzic B, Zivkovic I, et al. Practical aspects of monitoring of antiplatelet therapy. Semin Thromb Hemost 2017;43:14–23.10.1055/s-0036-1586230Suche in Google Scholar PubMed

51. Castellone DD, Adcock DM. Factor VIII activity and inhibitor assays in the diagnosis and treatment of hemophilia A. Semin Thromb Hemost 2017;43:320–30.10.1055/s-0036-1581127Suche in Google Scholar PubMed

52. Favaloro EJ, Pasalic L, Curnow J. Monitoring therapy during treatment of von willebrand disease. Semin Thromb Hemost 2017;43:338–54.10.1055/s-0036-1585080Suche in Google Scholar PubMed

53. Lippi G, Plebani M, Favaloro EJ. The changing face of hemostasis testing in modern laboratories: consolidation, automation, and beyond. Semin Thromb Hemost 2015;41:294–9.10.1055/s-0035-1544196Suche in Google Scholar PubMed

54. Plebani M, Lippi G. Is laboratory medicine a dying profession? Blessed are those who have not seen and yet have believed. Clin Biochem 2010;43:939–41.10.1016/j.clinbiochem.2010.05.015Suche in Google Scholar PubMed

55. Lippi G, Plebani M. The add value of laboratory diagnostics: the many reasons why decision-makers should actually care. J Lab Prec Med 2017;2:100.10.21037/jlpm.2017.12.07Suche in Google Scholar

56. Lippi G, Plebani M, Favaloro EJ. Technological advances in the hemostasis laboratory. Semin Thromb Hemost 2014;40:178–85.10.1055/s-0033-1364206Suche in Google Scholar PubMed

57. Nagalla S, Bray PF. Personalized medicine in thrombosis: back to the future. Blood 2016;127:2665–71.10.1182/blood-2015-11-634832Suche in Google Scholar PubMed PubMed Central

58. Danese E, Montagnana M, Fava C, Guidi GC. Circulating nucleic acids and hemostasis: biological basis behind their relationship and technical issues in assessment. Semin Thromb Hemost 2014;40:766–73.10.1055/s-0034-1387923Suche in Google Scholar PubMed

59. Mancuso ME, Fasulo MR. Thrombin generation assay as a laboratory monitoring tool during bypassing therapy in patients with hemophilia and inhibitors. Semin Thromb Hemost 2016;42:30–5.10.1055/s-0035-1564842Suche in Google Scholar PubMed

60. Mumford AD, Frelinger AL 3rd, Gachet C, Gresele P, Noris P, Harrison P, et al. A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thromb Haemost 2015;114:14–25.10.1160/TH14-11-0999Suche in Google Scholar PubMed

61. Lippi G, Bovo C, Favaloro EJ. Reflections on the next generation of hemostasis instrumentation. A glimpse into the future? LaboratoriumsMedizin 2016;40:1–7.Suche in Google Scholar

62. Lippi G, Mattiuzzi C, Favaloro EJ. Novel and emerging therapies: thrombus-targeted fibrinolysis. Semin Thromb Hemost 2013;39:48–58.10.1055/s-0032-1328935Suche in Google Scholar PubMed

63. Swystun LL, James PD. Genetic diagnosis in hemophilia and von Willebrand disease. Blood Rev 2017;31:47–56.10.1016/j.blre.2016.08.003Suche in Google Scholar PubMed

64. Cunha ML, Meijers JC, Middeldorp S. Introduction to the analysis of next generation sequencing data and its application to venous thromboembolism. Thromb Haemost 2015;114: 920–32.10.1160/TH15-05-0411Suche in Google Scholar PubMed

65. Lannoy N, Hermans C. Principles of genetic variations and molecular diseases: applications in hemophilia A. Crit Rev Oncol Hematol 2016;104:1–8.10.1016/j.critrevonc.2016.04.005Suche in Google Scholar PubMed

66. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014;508:469–76.10.1038/nature13127Suche in Google Scholar PubMed PubMed Central

67. Goodeve AC, Pavlova A, Oldenburg J. Genomics of bleeding disorders. Haemophilia 2014;20 Suppl 4:50–3.10.1111/hae.12424Suche in Google Scholar PubMed PubMed Central

68. Kulkarni P, Frommolt P. Challenges in the setup of large-scale next-generation sequencing analysis workflows. Comput Struct Biotechnol J 2017;15:471–7.10.1016/j.csbj.2017.10.001Suche in Google Scholar PubMed PubMed Central

Received: 2017-12-24
Accepted: 2018-1-19
Published Online: 2018-2-19
Published in Print: 2018-6-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.1.2023 von https://www.degruyter.com/document/doi/10.1515/cclm-2017-1205/html?lang=de
Scroll Up Arrow