Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 25, 2021

Clinical usefulness of drug-laboratory test interaction alerts: a multicentre survey

Jasmijn A. van Balveren, Wilhelmine P. H. G. Verboeket-van de Venne, Carine J. M. Doggen, Anne S. Cornelissen, Lale Erdem-Eraslan, Albert J. de Graaf, Johannes G. Krabbe, Ruben E. A. Musson, Wytze P. Oosterhuis, Yolanda B. de Rijke, Heleen van der Sijs, Andrei N. Tintu, Rolf J. Verheul, Rein M. J. Hoedemakers, Ron Kusters, Dutch Society for Clinical Chemistry and Laboratory Medicine and task group ‘SMILE’: Signaling Medication Interactions and Laboratory test Expert system

Abstract

Objectives

Knowledge of possible drug-laboratory test interactions (DLTIs) is important for the interpretation of laboratory test results. Failure to recognize these interactions may lead to misinterpretation, a delayed or erroneous diagnosis, or unnecessary extra diagnostic tests or therapy, which may harm patients. The aim of this multicentre survey was to evaluate the clinical value of DLTI alerts.

Methods

A survey was designed with six predefined clinical cases selected from the clinical laboratory practice with a potential DLTI. Physicians from several departments, including internal medicine, cardiology, intensive care, surgery and geriatrics in six participating hospitals were recruited to fill in the survey. The survey addressed their knowledge of DLTIs, motivation to receive an alert and opinion on the potential influence on medical decision making.

Results

A total of 210 physicians completed the survey. Of these respondents 93% had a positive attitude towards receiving DLTI alerts; however, the reported value differed per case and per respondent’s background. In each clinical case, medical decision making was influenced as a consequence of the reported DLTI message (ranging from 3 to 45% of respondents per case).

Conclusions

In this multicentre survey, most physicians stated DLTI messages to be useful in laboratory test interpretation. Medical decision making was influenced by reporting DLTI alerts in each case. Alerts should be adjusted according to the needs and preferences of the receiving physicians.


Corresponding author: Jasmijn A. van Balveren, MSc, Laboratory for Clinical Chemistry and Haematology, Jeroen Bosch Hospital, Henri Dunantstraat 1, PO Box 90153, ’s-Hertogenbosch, Den Bosch, The Netherlands; and Department of Health Technology and Services Research, Technical Medical Centre, University of Twente, Enschede, The Netherlands, Phone: +31 (0)73-553 27 64, Fax: +31 (0)73-5532958, E-mail:

Funding source: Stichting Kwaliteitsgelden Medisch Specialisten (SKMS)

Award Identifier / Grant number: 42678870

Acknowledgments

We thank all the respondents for their time to complete the survey.

  1. Research funding: None declared.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

References

1. Whiting, PF, Davenport, C, Jameson, C, Burke, M, Sterne, JA, Hyde, C, et al.. How well do health professionals interpret diagnostic information? A systematic review. BMJ Open 2015;5:e008155. https://doi.org/10.1136/bmjopen-2015-008155.Search in Google Scholar PubMed PubMed Central

2. Vlasveld, LT, van’t Wout, J, Castel, A. False elevation of chromogranin A due to proton pump inhibitors. Neth J Med 2011;69:207.Search in Google Scholar

3. ten Berge, D, Muller, W, Beishuizen, A, Cornet, AD, Slingerland, R, Krabbe, JG. Significant interference on specific point-of-care glucose measurements due to high dose of intravenous vitamin C therapy in critically ill patients Clinical Chemistry and Laboratory Medicine; 2021;59:e197–99.10.1515/cclm-2020-1445Search in Google Scholar PubMed

4. Young, D. Effects of drugs on clinical laboratory tests. Washington: AACC Press; 2000.Search in Google Scholar

5. Jackups, RJr, Szymanski, JJ, Persaud, SP. Clinical decision support for hematology laboratory test utilization. Int J Lab Hematol 2017;39:128–35. https://doi.org/10.1111/ijlh.12679.Search in Google Scholar PubMed

6. Dighe, AS. Enhancing the value of the laboratory with clinical decision support. Clin Lab Med 2019;39:ix–x. https://doi.org/10.1016/j.cll.2019.02.001.Search in Google Scholar PubMed

7. Jackson, BR. Decision support from a reference laboratory perspective. Clin Lab Med 2019;39:295–302. https://doi.org/10.1016/j.cll.2019.01.008.Search in Google Scholar PubMed

8. Lewandrowski, K. Integrating decision support into a laboratory utilization management program. Clin Lab Med 2019;39:245–57. https://doi.org/10.1016/j.cll.2019.01.004.Search in Google Scholar PubMed

9. Plebani, M, Aita, A, Padoan, A, Sciacovelli, L. Decision support and patient safety. Clin Lab Med 2019;39:231–44. https://doi.org/10.1016/j.cll.2019.01.003.Search in Google Scholar PubMed

10. Bayoumi, I, Al Balas, M, Handler, SM, Dolovich, L, Hutchison, B, Holbrook, A. The effectiveness of computerized drug-lab alerts: a systematic review and meta-analysis. Int J Med Inf 2014;83:406–15. https://doi.org/10.1016/j.ijmedinf.2014.03.003.Search in Google Scholar PubMed

11. Schiff, GD, Klass, D, Peterson, J, Shah, G, Bates, DW. Linking laboratory and pharmacy: opportunities for reducing errors and improving care. Arch Intern Med 2003;163:893–900. https://doi.org/10.1001/archinte.163.8.893.Search in Google Scholar PubMed

12. Procop, GW, Weathers, AL, Reddy, AJ. Operational aspects of a clinical decision support program. Clin Lab Med 2019;39:215–29. https://doi.org/10.1016/j.cll.2019.01.002.Search in Google Scholar PubMed

13. Rudolf, JW, Dighe, AS. Decision support tools within the electronic health record. Clin Lab Med 2019;39:197–213. https://doi.org/10.1016/j.cll.2019.01.001.Search in Google Scholar

14. van Balveren, JA, Verboeket-van de Venne, W, Erdem-Eraslan, L, de Graaf, AJ, Loot, AE, Musson, REA, et al.. Impact of interactions between drugs and laboratory test results on diagnostic test interpretation – a systematic review. Clin Chem Lab Med 2018;56:2004–9. https://doi.org/10.1515/cclm-2018-0900.Search in Google Scholar

15. Friedman, RB, Young, DS, Beatty, ES. Automated monitoring of drug-test interactions. Clin Pharmacol Ther 1978;24:16–21. https://doi.org/10.1002/cpt197824116.Search in Google Scholar

16. Groves, WE, Gajewski, WH. Use of a clinical laboratory computer to warn of possible drug interference with test results. Comput Progr Biomed 1978;8:275–82. https://doi.org/10.1016/0010-468x(78)90035-1.Search in Google Scholar

17. McNeely, MD. Computerized interpretation of laboratory tests: an overview of systems, basic principles and logic techniques. Clin Biochem 1983;16:141–6. https://doi.org/10.1016/s0009-9120(83)93962-0.Search in Google Scholar

18. Kailajarvi, M, Takala, T, Gronroos, P, Tryding, N, Viikari, J, Irjala, K, et al.. Reminders of drug effects on laboratory test results. Clin Chem 2000;46:1395–400.10.1093/clinchem/46.9.1395Search in Google Scholar

19. Taskforce, DLTI. Guidance on interactions between clinical chemical parameters and drugs. Dutch Society of Clinical Chemistry; 2016.Search in Google Scholar

20. Bates, DW, Kuperman, GJ, Wang, S, Gandhi, T, Kittler, A, Volk, L, et al.. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J Am Med Inf Assoc 2003;10:523–30. https://doi.org/10.1197/jamia.m1370.Search in Google Scholar PubMed PubMed Central

21. Horsky, J, Aarts, J, Verheul, L, Seger, DL, van der Sijs, H, Bates, DW. Clinical reasoning in the context of active decision support during medication prescribing. Int J Med Inf 2017;97:1–11. https://doi.org/10.1016/j.ijmedinf.2016.09.004.Search in Google Scholar PubMed

22. van der Sijs, H, Aarts, J, Vulto, A, Berg, M. Overriding of drug safety alerts in computerized physician order entry. J Am Med Inf Assoc 2006;13:138–47. https://doi.org/10.1197/jamia.m1809.Search in Google Scholar PubMed PubMed Central

23. Helmons, PJ, Suijkerbuijk, BO, Nannan Panday, PV, Kosterink, JG. Drug-drug interaction checking assisted by clinical decision support: a return on investment analysis. J Am Med Inf Assoc 2015;22:764–72. https://doi.org/10.1093/jamia/ocu010.Search in Google Scholar PubMed

24. Légat, L, Van Laere, S, Nyssen, M, Steurbaut, S, Dupont, AG, Cornu, P. Clinical decision support systems for drug allergy checking: systematic review. J Med Internet Res 2018;20:e258. https://doi.org/10.2196/jmir.8206.Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/cclm-2020-1770).


Received: 2020-11-30
Accepted: 2021-02-15
Published Online: 2021-02-25
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow