
Validation of the enhanced liver fibrosis (ELF)-test in heparinized and EDTA plasma for use in reflex testing algorithms for metabolic dysfunction-associated steatotic liver disease (MASLD)

https://doi.org/10.1515/cclm-2024-0470
Received March 14, 2024; accepted May 3, 2024; published online May 15, 2024

Keywords: metabolic dysfunction-associated steatotic liver disease (MASLD); advanced liver fibrosis; enhanced liver fibrosis (ELF)-test; reflex testing; diagnostic algorithms

To the Editor,

Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly becoming the most common liver disease worldwide, currently affecting around a third of the adult population [1]. Diagnostic algorithms that use non-invasive tests (NITs) to stage MASLD and allow for the non-invasive and early detection of advanced stages of MASLD fibrosis are currently being developed and implemented [2–4]. An often-proposed strategy is the use of two or more sequential NITs to accurately and cost-effectively assess the risk of underlying fibrosis. Commonly, these combinations start with the FIB-4 score, a low-cost and easy-to-use NIT requiring age, AST, ALT and platelets, followed by a more expensive, more robust test such as the enhanced liver fibrosis (ELF)-test. Reflex testing with such combinations would enhance the diagnostic process for fibrotic MASLD. Yet, whereas transaminases are commonly measured in heparinized plasma and platelets are measured in EDTA plasma, the ELF-test has only been validated for use in serum. Therefore, we aimed to validate the ELF-test in both heparinized plasma and EDTA plasma.

To this end, we utilized the Nijmegen-Leiden-Amsterdam (NL-A2) study, consisting of patients at risk of MASLD from primary, secondary and tertiary care who were screened with NITs (i.e., FIB-4 score and vibration controlled transient elastography (VCTE)), as the derivation cohort. Blood samples consisting of serum, heparinized plasma and EDTA plasma were collected and stored in a

Koen C. van Son and Anne-Marieke van Dijk contributed equally to this work.

*Corresponding author: Koen C. van Son, Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands; and Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands, E-mail: k.c.vanson@amsterdamumc.nl

Anne-Marieke van Dijk and Stan Driessen, Department of Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands; and Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands, E-mail: a.vandijk2@amsterdamumc.nl (A.-M. van Dijk)

Anne Linde Mak, Julia J. Witjes, Veera A.T. Houttu, Diona Zwirs, Max Nieuwdorp and Adriaan Georgius Holleboom, Department of Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands

Bert-Jan H. van den Born, Department of Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands; and Department of Public and Occupational Health, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands

Johan C. Fischer and Henrike M. Hamer, Laboratory Specialized Diagnostics & Research, Department of Laboratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands

Maarten E. Tushuizen, Department of Gastroenterology and Hepatology, LUMC, Leiden, The Netherlands

Joost P.H. Drenth and Ulrich H.W. Beuers, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands

Joanne Verheij, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
designated biobank. The validation cohorts consist of a selection of the NAFLD in the healthy Life in an urban sitting (NILE) cohort, representing a primary care population at risk of MASLD, and the Amsterdam NAFLD-NASH cohort (ANCHOR), representing a secondary and tertiary care population with histologically characterized MASLD [5, 6]. The three ELF proteins (hyaluronic acid (HA), PIIINP and TIMP-1) were analyzed separately using ELF-test kits provided by Siemens according to manufacturers’ instructions using the Atellica IM analyser (Siemens Heathineers) [7]. All samples were analyzed simultaneously at the endocrinology laboratory at the Amsterdam UMC, location AMC.

The NLA2 derivation cohort consisted of 144 participants with a mean age of 57.9 (12.3) years (Supplementary Table 1). 63.9 % of participants were women and 55.6 % of participants had type 2 diabetes mellitus. Mean BMI was 31.5 (5.5) kg/m², with a mean age of 57.9 (12.3) years (Supplementary Table 1). Application of the corrected formula resulted in a mean ELF-score in EDTA plasma comparable to that in serum (9.23 (0.82) vs. 9.26 (0.79) (p=0.823) (Supplementary Table 2). Mean ELF-score in heparinized plasma was comparable to serum using the unadjusted and the corrected formulas. When comparing agreement between ELF-test conducted in heparinized plasma and serum, Cohen’s kappa increased from 0.84 to 0.87 when using the corrected formula compared to the unadjusted formula. When using ELF-test conducted in EDTA plasma, Cohen’s kappa increased from 0.68 to 0.90.

In the ANCHOR cohort, mean ELF-score in heparinized plasma and EDTA plasma using the unadjusted formulas was comparable to mean ELF-score in serum (8.91 (0.86) vs. 8.91 (0.86) (p=0.992), and 8.67 (0.86) vs. 8.91 (0.86) (p=0.133), respectively). When using the corrected formulas, the mean ELF-score remained comparable between serum and heparinized plasma and EDTA plasma (9.16 (0.84) vs. 8.91 (0.86) (p=0.100), and 9.03 (0.87) vs. 8.91 (0.86) (p=0.411), respectively) (Supplementary Table 2). Figure 1 shows Bland-Altman plots of serum and heparinized plasma and serum and EDTA plasma using the unadjusted and the corrected formulas in the validation cohorts. Sensitivity of the ELF-test for the detection of ≥F3 fibrosis was higher using the corrected formulas for heparinized plasma (0.53 (0.29, 0.77) vs. 0.47 (0.23, 0.71)) and EDTA plasma (0.53 (0.29, 0.77) vs. 0.29 (0.08, 0.51)) compared to the unadjusted formulas. The AUC of ELF-test with the predefined cut-off of 9.8 to detect ≥F3 fibrosis was higher for the corrected formulas for heparinized plasma (0.71 (0.58, 0.84) vs. 0.68 (0.53, 0.81)) and EDTA plasma (0.70 (0.56, 0.83) vs. 0.62 (0.51, 0.74)) compared to the unadjusted formulas (Supplementary Table 3).

To explore the concept of reflex testing, the Camden & Islington algorithm [9] – in which an ELF-test follows an intermediate FIB-4 score (1.30–3.25) – was retrospectively applied in the ANCHOR cohort. 19 participants (31.7 %) had an intermediate FIB-4 score and would thus be provided an ELF-test for which the manufacturer’s cut-off of 9.8 was used (Supplementary Figure 1). One participant was omitted from analyses due to insufficient data to calculate the FIB-4 score. The sensitivity and specificity of this reflex testing algorithm using ELF-test performed in serum were 0.38 (0.14, 0.61) and 0.93 (0.86, 1.00), yielding an AUC of 0.70 (0.55, 0.84). Using heparinized plasma or EDTA plasma with the unadjusted formulas yielded AUCs of 0.69 (0.54, 0.83) and
0.67 (0.52, 0.82), and application of the corrected formulas yielded AUCs of 0.70 (0.56, 0.85) and 0.69 (0.55, 0.84), respectively (Supplementary Table 4). Taken together, here we demonstrate that ELF-test performed in heparinized plasma and EDTA plasma has comparable performance to that of ELF-test performed in serum when using correction factors. The usefulness of the corrected ELF-test formulas is demonstrated in separate validation cohorts. This allows for the application of reflex testing algorithms with the ELF-test as a second-tiered test. Sensitivity and AUC for the detection of ≥F3 fibrosis increased when performing the ELF-test in heparinized plasma and EDTA plasma using the corrected compared to the unadjusted formulas. Interestingly, AUCs, including that of ELF-test performed in serum, are considerably lower than previously reported in a meta-analysis by Vali et al. who reported an AUC of 0.83 (0.71, 0.90) [10]. There are some study limitations including the relatively small sample size of the histologically characterized validation cohort and unequal distribution of MASLD-subtypes. Nevertheless, our study has strong clinical utility: the validation of ELF-test in heparinized plasma and EDTA plasma allows for direct applicability of the ELF-test in reflex testing algorithms for fibrotic MASLD.

Acknowledgments: We are most grateful to the participants of the NLA2, NILE and ANCHOR studies. We thank Siemens for supplying the ELF kits, especially Vincent Schaarman and Cees van Eegeraat. We thank Ulrika Boulund for helping with the analyses for the corrected ELF-test formulas.

Research ethics: All studies were approved by the Medical Ethical Committee of the Amsterdam UMC, Amsterdam, The Netherlands, and the study was conducted in accordance with the declaration of Helsinki (as revised in 2013).

Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: The authors state no competing interests.
Research funding: The HELIUS study is conducted by the Amsterdam University Medical Centers, location AMC and the Public Health Service of Amsterdam. Both organisations provided core support for HELIUS. The HELIUS study is also funded by the Dutch Heart Foundation, the Netherlands Organization for Health Research and Development (ZonMw), the European Union (FP-7), and the European Fund for the Integration of non-EU immigrants (EIF). This work has received funding from an ITN Marie Curie Best-Treat – Building a Gut Microbiome Engineering Toolbox for In-Situ Therapeutic Treatments for Non-alcoholic Fatty Liver Disease No. 813781 ITN BestTreat (on which VH is appointed). MN is supported by a personal ZonMW-VICI grant 2020 (09150182010020). A.G.H. is supported by the Amsterdam UMC Fellowship grant, an Amsterdam UMC Innovation grant, two grants from the Dutch Gastroenterology & Hepatology Foundation MLDS and two TKI-PPP grants from Health~Holland.

Data availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.

References


2. van Dijk AM, Schattenberg JM, Holleboom AG, Tushuizen ME. Referral care paths for non-alcoholic fatty liver disease-Gearing up for an ever more prevalent and severe liver disease. United Eur Gastroenterol J 2021;9:903–9.


Supplementary Material: This article contains supplementary material (https://doi.org/10.1515/ccm-2024-0470).