Protecting ultra- and hyperhydrophilic implant surfaces in dry state from loss of wettability

DOI 10.1515/cdbme-2016-0123

Abstract: Ultrahydrophilic titanium miniplates with sandblasted and acid etched (SLA) surfaces were protected from loss of hydrophilicity by an exsiccation layer of salt and stored in a dry state. Various salts in different concentrations were tested in respect to their conservation capacity and optical appearance. Potassium phosphate buffer in a specified composition appeared to be optimal. This optimal system was applied in a long time storage experiment showing no loss of hydrophilicity over years. It was also transferred with success to hyperhydrophilic dental implants.

Keywords: dental implants; dry conservation; exsiccation layer; hydrophilic; hyperhydrophilic; imaginary contact angles; sandblasted and acid etched (SLA); Titanium; ultrahydrophilic.

1 Introduction

Hydrophilic surfaces are very sensitive and lose their wetting properties by storing in air [1]. So a conservation of the hydrophilicity is necessary. As early as 2000 [2, 3] Jennissen reported the preparation of ultrahydrophilic surfaces (θ < 10°) on titanium by treatment with chromosulphuric acid and its conservation in dry methanol (for review see [4]). The accelerated and improved osseointegration of this surface has been demonstrated in the mandible of dogs [5]. Later Steinemann and Simpson reported that hydrophilic but not ultrahydrophilic sandblasted and acid etched (SLA) surfaces could be stored and conserved in certain salt solutions (e.g. NaCl) [6], now employed by Straumann GmbH known under the name SLActive®. Its benefits have been demonstrated over the years in preclinical as well as clinical studies [7].

© 2016 Herbert P. Jennissen et al., licensee De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.

2 Material and methods

SLA (type 1): Titanium miniplates (14 × 14 × 1.5 mm) were manufactured from a titanium rod (grade 4, ASTM F67) and sandblasted with corundum. The sandblasted plates were etched with 50% H2SO4 at evaluated temperature by a proprietary method developed by Morphoplant GmbH leading to an ultrahydrophilic and microstructured surface containing 1–3% corundum [9]. SLA (type 2): Titanium sheets (300 × 300 × 1 mm, grade 4, ASTM F67) were sandblasted with corundum and sandblasted miniplates (14 × 14 × 1.0 mm) were stamped from these sheets. The sandblasted miniplates were etched by a combined process, which is developed and proprietary by Morphoplant GmbH. The first step is etching in diluted HF at room temperature and the second step etching in 50% H2SO4 at evaluated temperature leading to an ultrahydrophilic, microstructured and nearly corundum free surface.

Dry Conservation of the SLA surface by an exsiccation layer of salt: The test samples with the initial SLA surfaces were incubated in the specified salt solution for several hours at room temperature. Afterwards they were taken out from the salt solution and air dried for 2 h under clean conditions [4, 9] in two variants: (1) open storage: in air under ambient conditions; (2) in closed glass vials.

The following abbreviations are used for the tested buffers (in parenthesis the molar ratio is given).

- PBS: phosphate buffered saline: 136.8 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4 and 8.1 mM Na2HPO4
- PBS(+): phosphate buffered saline with Mg and Ca: 136.8 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 8.1 mM Na2HPO4, 1.0 mM CaCl2, 0.5 mM MgCl2
- NaPB: sodium phosphate buffer: Na2HPO4, NaH2PO4 (5.4/1)
- KPB: potassium phosphate buffer: K2HPO4, KH2PO4 (5.4/1)
MgPB: magnesium phosphate buffer: The specified amount of MgHPO₄ was suspended in water and the minimum amount for solubility of H₂PO₄ was added.

Contact Angle Measurements: Before measurement the exsiccation layer of salt was washed off [8] the sample by dipping in water and MeOH and dried in air. Classical contact angles were measured by the method of Wilhelmy in ultrapure water on a DCAT 11 EC tensiometer (Dataphysics GmbH, Filderstadt, Germany) at constant 20°C with the Dataphysic’s SCAT software (vers. 3.2.2.86). In this software there is no base line correction for imbibition [10] yielding contact angles (θ) from 0° to 180°, whereby the mathematically incorrect definition θ = 0 for cos(θ) > 1 is reported [11–14]. Imaginary contact angles after base line correction were calculated by a custom made algorithm in the program MatLab (vers. 7.14, The MathWorks Inc., Natick, MA, USA). Herewith for −1 < cos(θ) < 1 the value of the contact angle lays between 180° and 0° as above, whereas for cos(θ) > 1 contact angles in imaginary number space, i.e. imaginary contact angles, are obtained [15–17].

Nomenclature: Classical and real contact angles are denoted by a small letter theta (θ) and imaginary contact angles by a capital theta (Θ) [14]. Advancing and receding angles are identified by the indices a and r, respectively. Hybrid dynamic contact angles denote the combination of an advancing contact angle in real with a receding contact angle in imaginary number space [10]. For surfaces θ < 10° the term “ultrahydrophilic” and for surfaces with pure imaginary contact angles the term “hyperhydrophilic” is employed [10].

Long Term Stability: For long term stability testing 200 miniplates with SLA (type 2) surface were prepared and contact angles were measured immediately after etching with the mean classical values: θₐ = 1.1 ± 3.2° and θᵣ = 0.0 ± 0.0°. For the storage experiment only samples with classical contact angles of 0° were chosen (87% of the samples). These samples were conserved by an exsiccation layer of 96 mM KPB, fixed in alumina tubes and packaged in closed glass vessels and sterilized by gamma irradiation with a dose of minimum 25 kGy by BBF Sterilisationsservice GmbH (Kernen, Germany). One part of the sterile samples were stored at ambient temperature (real time ageing), whereas the other part was stored at 60°C (accelerated ageing) in an oven under recording of the temperature according to ASTM F1980 [18]. Since this ASTM is valid for sterile packaging and the activation energy for the chemistry involved in dry salt conservation is unknown the statement “Real time aging programs provide the best data” [18] should be noted. After defined storage times contact angle were measured.

<table>
<thead>
<tr>
<th>Initial medium</th>
<th>Conc. (mM)</th>
<th>pH</th>
<th>S*</th>
<th>n</th>
<th>θᵣ ± SD</th>
<th>θₐ ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial surface</td>
<td>1 5</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>1 5</td>
<td>72.0 ± 17.0</td>
<td>0.0 ± 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>149</td>
<td>7.4</td>
<td>1 5</td>
<td>4.6 ± 10.2</td>
<td>1.3 ± 3.0</td>
<td></td>
</tr>
<tr>
<td>NaPB</td>
<td>960</td>
<td>7.3</td>
<td>1 5</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td></td>
</tr>
<tr>
<td>KPB</td>
<td>96</td>
<td>7.6</td>
<td>1 5</td>
<td>0.0 ± 0.0</td>
<td>6.0 ± 0.0</td>
<td></td>
</tr>
<tr>
<td>(NH₄)₂(HPO₄)</td>
<td>100</td>
<td>7.9</td>
<td>1 5</td>
<td>3.5 ± 7.8</td>
<td>0.0 ± 0.0</td>
<td></td>
</tr>
</tbody>
</table>

*S, Surface; 1, SLA (type 1); 2, SLA (type 2).

Application to Dental Implants: Screw type test implants (1 = 13 mm, Ø(top) = 5 mm, for the shape of the implants see [16]) were manufactured from a titanium rod (grade 4, ASTM F67) and sandblasted with corundum. The sandblasted implants were etched under similar condition like the SLA (type 2) plates on a semiautomatic pilot construction (medSurface dent, RENA GmbH, Gütenbach, Germany) [16]. The dry conservation was also performed on this pilot construction. Therefore the etched samples were transferred in a salt bath containing 96 mM of KPB and incubated for 60 min at ambient temperature in a flow. Afterward the implants were dried at 60°C for 60 min and packed in closed glass vessels. Contact angles were measured by the method of Wilhelmy as described previously after storage for 1 month and washing off the protective layer [8, 17].

3 Results

3.1 Examination of different salts for conservation of hydrophilicity in dry state by classical analysis

Contact angles obtained by different ions contained in the exsiccation layers during storage for 3–5 days under open conditions are shown in Table 1. PBS preserves the ultra-hydrophilicity quite well, but shows a blotchy pattern after drying (Figure 1B) impairing the optical appearance and homogeneity. Therefore an alternative exsiccation layer
Table 2: Influence of the exsiccation layer on the dynamic contact angles (classical evaluation) of SLA surfaces (type 2) after 14 days storage under packed conditions.

<table>
<thead>
<tr>
<th>Initial medium</th>
<th>n</th>
<th>Conc. (mM)</th>
<th>pH</th>
<th>$\theta_r \pm SD$</th>
<th>$\theta_i \pm SD$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial surface</td>
<td>20</td>
<td></td>
<td>0.6 \pm 1.8</td>
<td>0.0 \pm 0.0</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>5</td>
<td></td>
<td>86.9 \pm 6.8</td>
<td>0.0 \pm 0.0</td>
<td></td>
</tr>
<tr>
<td>KPB</td>
<td>5</td>
<td>96</td>
<td>0.0 \pm 0.0</td>
<td>0.0 \pm 0.0</td>
<td></td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>5</td>
<td>100</td>
<td>6.3 \pm 7.9</td>
<td>5.5 \pm 0.0</td>
<td></td>
</tr>
<tr>
<td>CaCl$_2$</td>
<td>5</td>
<td>100</td>
<td>6.7 \pm 3.3</td>
<td>7.4 \pm 0.0</td>
<td></td>
</tr>
</tbody>
</table>

In conclusion, KPB in initial concentration of 96 mM is the best system for conservation of surfaces of SLA titanium in dry state in respect to preservation of hydrophilicity, optical appearance and biocompatibility.

3.2 Long term wetting stability evaluated by imaginary contact angles

Long term stability of wettability conserved by a 96 mM produced KPB exsiccation layer was now controlled by baseline correction and imaginary dynamic contact angles for the first time (Table 3). Imaginary contact angles (hyperhydrophilicity) give information on wettability non amenable to measurements hitherto. After acid etching one real contact angle (5%), eight hybrid (40%) and 11 imaginary contact angles (55%) are observed. After exsiccation layer formation and γ-sterilization zero real, one hybrid (10%) and nine imaginary (7i°–9i°, 90%) contact angles are observed. Real time ageing by storage for 30 months (ca. 900 days) at ambient temperature yields 100% imaginary contact angles of 12i°–13i° for both dynamic contact angles! These studies will be extended to 5 years. In contrast accelerated ageing at 60°C, assumed to correspond to a storage time of 5 years, reduces the imaginary contact angles to 6i°–8i° (80%) and reintroduces a hybrid contact angle (20%). However the wettability of the surfaces after accelerated ageing is still to be classed as hyperhydrophilic. These experiments also clearly show that exsiccation layer conservation of contact angles is based on chemistry and is not due to the salt layer physically protecting from putative atmospheric contaminations.

The good conservation ability of hydrophilicity as well as the appealing optical appearance of the KPB exsiccation...
layer, can be transferred to dental implants with more complicated geometry. Figure 2 shows the homogeneity of a KPB exsiccation layer on test implant with screw-type shape. Contact angle measurement by Wilhelmy of five of these KPB protected implants after storage for 31 days lead to: $\theta_a = (19.5 \pm 2.5)i$ and $\theta_l = (272 \pm 1.0)i$. Static pico-drop analysis yielded contact angels of 0° [17]. These values match well with the values after etching indicating stability of the contact angle [16, 17]. By classical evaluation all advancing and receding angles are wrongly classified as zero.

4 Conclusion

Ultra- and hyperhydrophilic titanium mini plates as well as dental implants with SLA surfaces can be protected from loss of hydrophilicity with an exsiccation layer of salt. KPB in an initial concentration of 96 mM appears to be optimal considering conservation capacity, biocompatibility and optical appearance. Those protected samples are suitable for gamma sterilization and could be stored for several years.

Author’s Statement

Research funding: The author state no funding involved. Conflict of interest: Authors state no conflict of interest. Material and methods: Informed consent: Informed consent is not applicable. Ethical approval: The conducted research is not related to either human or animal use.

References