Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter September 22, 2018

Short Distance Impedance Pneumography

  • Michael Klum EMAIL logo , Tianhao Schenck , Alexandru Pielmus , Timo Tigges and Reinhold Orglmeister

Abstract

Gold-standards for biosignal acquisition require body-spanning sensor positioning which is contradictory to the high integration of modern wearable medical monitors. In applications where obtrusiveness can decrease accuracy, as in sleep monitoring, compact sensor configurations are not only a matter of convenience. To acquire respiratory signals, most systems rely on nasal cannula pressure sensors or inductance plethysmography. Another well-established method is the impedance pneumography, where we aim to contribute to the field of short distance electrode configurations. Evaluating distances down to 8 cm we report linear correlations above 0.85 with respect to a pneumotachometer reference. We estimate the respiratory rate with an error below 0.2 bpm. Inspiratory and expiratory phase detection is possible with an error below 2.5 %. Using a first order polynomial model we estimated the respiratory flow with a relative error of down to 19 % at 8 cm. We conclude that short distance impedance pneumography is feasible and rough flow and volume estimates are possible using linear models. Further research regarding shorter distances and calibration is of great interest.

Published Online: 2018-09-22
Published in Print: 2018-09-01

© 2018 the author(s), published by Walter de Gruyter Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded on 22.2.2024 from https://www.degruyter.com/document/doi/10.1515/cdbme-2018-0028/html
Scroll to top button