Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter September 22, 2018

Monte-Carlo Simulation of Light Tissue Interaction in Medical Hyperspectral Imaging Applications

  • Bert. H. Herrmann EMAIL logo and Christoph Hornberger


In Hyperspectral imaging (HSI) applications in medicine a uniform illumination is used and the illuminated surface is recorded with a camera with spectral resolution. Unlike in tissue reflectance spectroscopy with fixed light source - detector distances, in HSI the contribution of the influence of different tissue layers to the absorption signal is poorly understood. In this work a Monte-Carlo simulation is implemented which simulates the specific HSI illumination and detector geometry. A four-layer tissue model with variable blood volume fraction and oxygen saturation is used. With 5 % blood volume fraction and 75 % oxygen saturation, SaO2, of surrounding tissue, saturation changes in 1 mm and 2 mm deep layers lead to a change in remission of up to 3 % and up to 1 % respectively. Changes in deeper layers are hardly detectable. Further simulations will be focused on different tissue models as the depth resolution is expected to vary with tissue parameters like blood volume fraction.

Published Online: 2018-09-22
Published in Print: 2018-09-01

© 2018 the author(s), published by Walter de Gruyter Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded on 23.2.2024 from
Scroll to top button