Skip to content
BY 4.0 license Open Access Published by De Gruyter November 26, 2020

Impact of aortic annulus geometry according to ISO 5840:2019 (draft) on hydrodynamic performance of transcatheter aortic valve prostheses

Jan Oldenburg EMAIL logo , Sebastian Kaule , Stefan Siewert , Klaus-Peter Schmitz , Michael Stiehm and Niels Grabow


To assess the hydrodynamic performance of transcatheter aortic valve prostheses (TAVP), in vitro test using pulse duplicators is required. Test conditions as well as minimum performance criteria are specified in ISO 5840- 3:2013 and ISO 5840-3:2019-draft. In the 2019 published draft, modifications regarding hydrodynamic testing are proposed. Among others, the geometrical configuration of the fixation has changed, with the intention to improve the anatomical representation as well as the comparability of results from different test laboratories. We analyzed the consequences of altered annulus fixations regarding native leaflets as well as a step in the proximal area of the protheses to prevent their migration. The analyses were conducted with regard to the degree of calcification of the annulus ring on hydrodynamic parameters. By using 3D stereolithography printing technology, molds for casting of silicone elastomer of annulus models with and without native leaflets were manufactured. A modular system enabled us to use the same annulus ring to model the degree of calcification as well as different step sizes. We performed in vitro hydrodynamic testing according to ISO 5840-3:2019-draft of a selfexpandable valve prototype with porcine pericardial leaflets by using a commercially available pulse duplicator system. As expected, regurgitation increases with increasing degree of calcification, whereby the use of a step has no influence on the backflow of fluid during diastole. The effective orifice area (EOA) of the valve showed a clear tendency with respect to radial protrusion of the step. The EOA decreased as the radial protrusion increased. We also present a suggestion to prevent migration without affecting the general test results, by using a novel step design. We also found that the novel annulus model with native leaflet drastically reduced the regurgitation.

Published Online: 2020-11-26
Published in Print: 2020-09-01

© 2020 by Walter de Gruyter Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 1.2.2023 from
Scroll Up Arrow