Skip to content
BY 4.0 license Open Access Published by De Gruyter November 26, 2020

Surgical Audio Guidance: Feasibility Check for Robotic Surgery Procedures

Anna Schaufler EMAIL logo , Alfredo Illanes , Ivan Maldonado , Axel Boese , Roland Croner and Michael Friebe


In robot-assisted procedures, the surgeon controls the surgical instruments from a remote console, while visually monitoring the procedure through the endoscope. There is no haptic feedback available to the surgeon, which impedes the assessment of diseased tissue and the detection of hidden structures beneath the tissue, such as vessels. Only visual clues are available to the surgeon to control the force applied to the tissue by the instruments, which poses a risk for iatrogenic injuries. Additional information on haptic interactions of the employed instruments and the treated tissue that is provided to the surgeon during robotic surgery could compensate for this deficit. Acoustic emissions (AE) from the instrument/tissue interactions, transmitted by the instrument are a potential source of this information. AE can be recorded by audio sensors that do not have to be integrated into the instruments, but that can be modularly attached to the outside of the instruments shaft or enclosure. The location of the sensor on a robotic system is essential for the applicability of the concept in real situations. While the signal strength of the acoustic emissions decreases with distance from the point of interaction, an installation close to the patient would require sterilization measures. The aim of this work is to investigate whether it is feasible to install the audio sensor in non-sterile areas far away from the patient and still be able to receive useful AE signals. To determine whether signals can be recorded at different potential mounting locations, instrument/tissue interactions with different textures were simulated in an experimental setup. The results showed that meaningful and valuable AE can be recorded in the non-sterile area of a robotic surgical system despite the expected signal losses.

Published Online: 2020-11-26
Published in Print: 2020-09-01

© 2020 by Walter de Gruyter Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 1.2.2023 from
Scroll Up Arrow