Abstract
Mitral regurgitation alters the flow conditions in the left ventricle. To account for quantitative changes and to investigate the behavior of different flow components, a realistic computational model of the whole human heart was employed in this study. While performing fluid dynamics simulations, a scalar transport equation was solved to analyze vortex formation and ventricular wash-out for different regurgitation severities. Additionally, a particle tracking algorithm was implemented to visualize single components of the blood flow. We confirmed a significantly lowered volume of the direct flow component as well as a higher vorticity in the diseased case.
© 2021 The Author(s), published by Walter de Gruyter GmbH, Berlin/Boston
This work is licensed under the Creative Commons Attribution 4.0 International License.