Skip to content
BY 4.0 license Open Access Published by De Gruyter October 9, 2021

Traditional versus Neural Network Classification Methods for Facial Emotion Recognition

Herag Arabian , Verena Wagner-Hartl and Knut Moeller

Abstract

Facial emotion recognition (FER) is a topic that has gained interest over the years for its role in bridging the gap between Human and Machine interactions. This study explores the potential of real time FER modelling, to be integrated in a closed loop system, to help in treatment of children suffering from Autism Spectrum Disorder (ASD). The aim of this study is to show the differences between implementing Traditional machine learning and Deep learning approaches for FER modelling. Two classification approaches were taken, the first approach was based on classic machine learning techniques using Histogram of Oriented Gradients (HOG) for feature extraction, with a k-Nearest Neighbor and a Support Vector Machine model as classifiers. The second approach uses Transfer Learning based on the popular “Alex Net” Neural Network architecture. The performance of the approaches was based on the accuracy of randomly selected validation sets after training on random training sets of the Oulu-CASIA database. The data analyzed shows that traditional machine learning methods are as effective as deep neural net models and are a good compromise between accuracy, extracted features, computational speed and costs.

Published Online: 2021-10-09
Published in Print: 2021-10-01

© 2021 The Author(s), published by Walter de Gruyter GmbH, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 4.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/cdbme-2021-2052/html
Scroll Up Arrow