Skip to content
BY 4.0 license Open Access Published by De Gruyter October 9, 2021

Micro injection molding of individualised implants using 3D printed molds manufactured via digital light processing

  • Robert Mau EMAIL logo , Gábor Jüttner , Ziwen Gao , Farnaz Matin , Dorian Alcacer Labrador , Felix Repp , Samuel John , Verena Scheper , Thomas Lenarz and Hermann Seitz

Abstract

Here, we demonstrate a manufacturing process for individualised, small-sized implant prototypes. Our process is promising for the manufacturing of drug-releasing (micro)implants to be implanted in the round window niche (RWN-I, solid body, free-form-shaped design, 1.1 x 2.7 x 3.1 mm) and for frontal neo-ostium implants (FO-I, tube-like design, length ~ 7 mm, Ø ~ 2-6 mm) for frontal sinus drainage. Implant prototypes are manufactured using micro injection molding (μIM). We use digital light processing (DLP) as a 3D printing technique for rapid tooling of accurate molds for the μIM process. A common acrylate-based photopolymer for stiff and high-detailed modelling but with low head deflection temperature of HDT = 60.5 °C is used for DLP 3D printing of the molds. The molds were 3D printed with a layer height of 50 μm in about 20 min (RWN-I) and 60 min (FO-I). For μIM investigations, we use liquid silicone rubber (LSR) as a biocompatible and medically relevant material. Micro injection molding of LSR was investigated using mold temperatures between Tmold = 110 °C (long tcuring ~ 2 h) up to Tmold = 160 °C (short tcuring ~ 5 min). As a result, small-sized, complex-shaped implant prototypes of LSR can be successfully manufactured via μIM using high Tmold = 160 °C and short curing time. DLP 3D printing material with relative low HDT = 60.5 °C was suitable for μIM. There is no significant wear of the molds, when used for a low number of μIM cycles (n ~ 8). Design of metal mold housing has to be suitable (perfect fit of mold, no cavities facing the molds surface for prevention of thermal expansion of mold into cavities).

Published Online: 2021-10-09
Published in Print: 2021-10-01

© 2021 The Author(s), published by Walter de Gruyter GmbH, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 1.3.2024 from https://www.degruyter.com/document/doi/10.1515/cdbme-2021-2101/html
Scroll to top button