Skip to content
BY 4.0 license Open Access Published by De Gruyter October 9, 2021

Acquisition of Semantics for AI-based Applications in Medical Technologies

An overview

  • Thomas Wittenberg , Michaela Benz , Andreas Foltyn , Ralf Hackner , Julia Hetzel , Veit Wiesmann and Thomas Eixelberger

Abstract

For the development, training, and validation of AIbased procedures, such as the analysis of clinical data, prediction of critical events, or planning of healthcare procedures, a lot of data is needed. In addition to this data of any origin (image data, bio-signals, health records, machine states, …) adequate supplementary information about the meaning encoded in the data is required. With this additional information - the semantic or knowledge - a tight relation between the raw data and the human-understandable concepts from the real world can be established. Nevertheless, as the amount of data needed to develop robust AI-based methods is strongly increasing, the assessment and acquisition of the related knowledge becomes more and more challenging. Within this work, an overview of currently available concepts of knowledge acquisition are described and evaluated. Four main groups of knowledge acquisition related to AI-based technologies have been identified. For image data mainly iconic annotation methods are used, where experienced users mark or draw depicted entities in the images and label them using predefined sets of classifications. Similarly, bio-signals are manually labelled, whereby important events along the timeline are marked. If no sufficient data is available, augmentation and simulation techniques are applied yielding data and semantics at the same time. In applications, where expensive sensors are replaced by low-cost devices, the high-grade data can be used as semantics. Finally, classic rule-based approaches are used, where human factual and procedural knowledge about the data and its context is translated into machine-understandable procedures. All these methods are depending on the involvement of human experts. To reduce this, more intelligent and hybrid approaches are needed, shifting the focus from the-human-in-the-loop to the-machine- in-the-loop.

Published Online: 2021-10-09
Published in Print: 2021-10-01

© 2021 The Author(s), published by Walter de Gruyter GmbH, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 29.4.2024 from https://www.degruyter.com/document/doi/10.1515/cdbme-2021-2131/html
Scroll to top button