Abstract
Hydrophobic surfaces have gained a vast attention in different fields of biomedical applications over the last few years. Laser treatment has been shown as a promising technology for the generation of functional, inter alia, superhydrophobic surfaces. In this study a picosecond Yb-YAG laser was assigned for the generation of superhydrophobic characteristics on a steel alloy with application in surgical instrumentation. Regarding the ablation energy threshold of about 6 μJ for the given pulse width and laser beam characteristics and by assigning a suitable combination of microstructure kinematics and laser processing conditions a persistent hierarchical pattern is mapped over the laser-radiated surfaces. The average measured contact angle on the laserradiated surfaces was about 150°, which indicates their superhydrophobic properties.
© 2021 The Author(s), published by Walter de Gruyter GmbH, Berlin/Boston
This work is licensed under the Creative Commons Attribution 4.0 International License.