Skip to content
BY 4.0 license Open Access Published by De Gruyter October 9, 2021

Nonlinearity of Magnetostrictive Torque Sensor under Varying External Magnetic Field Strength

  • Jack A. Wilkie and Knut Moeller


Correctly torquing bone screws is an important factor in achieving positive patient outcomes during orthopaedic surgery. A torque-limiting smart screwdriver concept has been proposed, and ongoing work is being undertaken to model the screwing process and allow the concept to work. These models require experimental validation, so a test rig was developed. The magnetostrictive torque sensor in this test rig was affected by magnetic parts of the test rig, which offset the zero-torque point; this raised concerns over the effects on linearity, which were tested here. The torque sensor was tested against a non-magnetostrictive reference under varying external magnetic conditions. While the magnetic field offset the torque, there was no notable change in linearity under the conditions tested, and the linearity was always within the datasheet specifications. Hence, we conclude that in the context of this test rig, there were no negative effects on linearity, although under higher loading or stronger magnetic conditions, this may not hold.

Published Online: 2021-10-09
Published in Print: 2021-10-01

© 2021 The Author(s), published by Walter de Gruyter GmbH, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 23.9.2023 from
Scroll to top button