Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 9, 2014

Titanium dioxide high aspect ratio nanoparticle hydrothermal synthesis optimization

Paulina Półrolniczak EMAIL logo and Mariusz Walkowiak
From the journal Open Chemistry


TiO2-B (bronze) nanowires were synthesized via simple hydrothermal treatment of commercial titanium dioxide nanopowder in aqueous NaOH. The reaction temperature, calcination temperature, reaction time, NaOH concentration, autoclave filing fraction and precursor were systematically varied to optimize the nanowire morphology. The crystal structure, morphology and particle size were investigated by XRD, SEM and TEM. The morphology and structure are sensitive to experimental conditions. A reaction temperature of at least 150°C and NaOH concentration at least 10 M are essential, but reaction time from 24 to 72 h makes little difference. Nanowires obtained at 150°C were 60-180 nm wide and 2-4 μm long, while those after treatment at 200°C were thinner (40-100 nm) and longer (2-6 μm).

The relationship between reaction conditions and morphology is discussed and practical guidelines for titanium dioxide nanowire synthesis are suggested

Graphical Abstract


[1]lijima S., Nature, 1991, 35«, 5610.1007/BF00759901Search in Google Scholar

[2]Feldman Y., Wasserman E., Srolovitz D.A., Science, 1995, 267, 22210.1126/science.267.5195.222Search in Google Scholar

[3]Kong X.-H., Sun X.-M., Li X.-L, Li Y.-D., Mater. Chem. Phys., 2003, 82, 99710.1016/j.matchemphys.2003.09.004Search in Google Scholar

[4]Zhu H.Y., Lan Y., Gao X.P., Ringer S.P., Zheng Z.F., Song D.Y., Zhao J.C., J. Am. Chem. Soc., 2005,127,673010.1021/ja044689+Search in Google Scholar

[5]Watanabe T., Nakajima A., Wang R., Minabe M., Koizumi S., Fujishima A., Hashimoto K., Thin Solid Films, 1999,351, 26010.1016/S0040-6090(99)00205-9Search in Google Scholar

[6]Wei M.D., Konishi Y., Zhou H.S., Sugihara H., Arakawa H., J. Electrochem. Soc., 2006,153, A123210.1149/1.2194667Search in Google Scholar

[7]Lin S., Li D., Wu J., Li X., Akbar S.A., Sensor Actual B-Chem., 2011,156,50510.1016/j.snb.2011.02.046Search in Google Scholar

[8]Signoretto M., Ghedini E., Nichele V., Pinna F., Crocell V., Cerrato G., Microporous Mesoporus Mater., 2011,139,18910.1016/j.micromeso.2010.10.042Search in Google Scholar

[9]Wagemaker M., Kentgens A.P.M., Mulder F.M., Nature, 2002, 418, 39710.1038/nature00901Search in Google Scholar PubMed

[10]Wang K., Wei M., Morris M.A., Zhou H., Holmes J.D., Adv. Mater., 2007,19, 301610.1002/adma.200602189Search in Google Scholar

[11]Tsai M.-C., Chang J.C., Sheu H.-S., Chiu H.-T., Lee C.-Y., Chem. Mater., 2009,21,49910.1021/cm802327zSearch in Google Scholar

[12]Lei Y., Zhang L.D., Fan I.C., Chem. Phys. Lett., 2001, 338, 23110.1016/S0009-2614(01)00263-9Search in Google Scholar

[13]GhicovA., Tsuchiya H., MacakJ.M., Schmuki P., Electrochem. Commun., 2005,7,50510.1016/j.elecom.2005.03.007Search in Google Scholar

[14]Yoshida R., Suzuki Y., Yoshikawa S., J. Solid State Chem., 2005, 178,217910.1016/j.jssc.2005.04.025Search in Google Scholar

[15]Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K., Adv. Mater., 1999,11,130710.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-HSearch in Google Scholar

[16]Armstrong A.R., Armstrong G., Canales J., Bruce P.G., Angew. Chem. Int. Ed., 2004,43, 228610.1002/anie.200353571Search in Google Scholar

[17]PavasupreeS., NgamsinlapasathianS., NakajimaM.,SuzukiY., Yoshikawa S., J. Photochem. Photobiol. A: Chem., 2006,184, 163Search in Google Scholar

[18]Pavasupree S., Jitputti J., Ngamsinlapasathian S., Yoshikawa S., Mater. Res. Bull., 2008, 43,149 10.1016/j.materresbull.2007.02.028Search in Google Scholar

Received: 2013-9-17
Accepted: 2014-5-25
Published Online: 2014-10-9

© 2015 Paulina Półrolniczak, Mariusz Walkowiak

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.12.2022 from
Scroll Up Arrow