Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 1, 2014

Crystallographic and structural characterization of heterometallic platinum compounds Part VII. Heterohepta- and heterooctanuclear clusters

Milan Melnik , Peter Mikuš and Clive E. Holloway
From the journal Open Chemistry

Abstract

This review classifies and analyzes over fifty heterohepta- and heterooctanuclear platinum clusters. There are eight types of metal combinations in heteroheptanuclear: Pt6M, Pt5M2, Pt4M3, Pt3M4, Pt2M5, PtM6, Pt3Hg2Ru2 and Pt2Os3Fe2. The seven metal atoms are in a wide variety of arrangements, with the most common being one in which the central M atom (mostly M(I)) is sandwiched by two M3 triangles. Another arrangement often found is an octahedron of M6 atoms asymmetrically capped by an M atom. The shortest Pt-M bond distances (non-transition and transition) are 2.326(1) Å (M = Ga) and 2.537(6) Å (M = Fe). The shortest Pt-Pt bond distance is 2.576(2) Å.

In heterooctanuclear platinum clusters there are eight types of metal combinations: Pt6M2, Pt4M4, Pt3Ru5, Pt2M6, PtM7, Pt2W4Ni2, PtAu6Hg and PtAu5Hg2. From a structural point of view, the clusters are complex with bicapped octahedrons of eight metal atoms prevailing. The shortest Pt-M bond distances (non-transition and transition) are 2.651(3) Å (M = Hg) and 2.624(1) Å (M = Os). The shortest Pt-Pt bond distance is 2.622(1) Å. These values are somewhat longer than those in the heteroheptanuclear clusters. Several relationships between the structural parameters were found, and are discussed and compared with the smaller heterometallic platinum clusters

Graphical Abstract

References

[1] (a) Holloway C.E., Melník M., Centr. Eur. J. Chem., 2011, 9, 501; (b) Melník M., Sprušanský O., Holloway C.E., Centr. Eur. J. Chem., 2012, 10, 1709 Search in Google Scholar

[2] Melník M., Mikuš P., Holloway C.E., Centr. Eur. J. Chem., 2013, 11, 827 10.2478/s11532-013-0226-3Search in Google Scholar

[3] Melník M., Mikuš P., Holloway C.E., Centr. Eur. J. Chem., 2013, 11, 1902 10.2478/s11532-013-0320-6Search in Google Scholar

[4] Melník M., Mikuš P., Holloway C.E., Centr. Eur. J. Chem., 2014, 12, 283 10.2478/s11532-013-0382-5Search in Google Scholar

[5] Melník M., Mikuš P., Holloway C.E., Centr. Eur. J. Chem., DOI: 10.2478/s11532-014-0558-7 (in press) 10.2478/s11532-014-0558-7Search in Google Scholar

[6] (a) Hao L., Vittal J.J., Puddephatt R.J., Inorg. Chem. 1996, 35, 269; (b) Hao L., Vittal J.J., Puddephatt R.J., Organometallics 1996, 15, 3115 Search in Google Scholar

[7] (a) Yamamoto Y., Yamazaki H., Sakuri T., J. Amer. Chem., Soc., 1982, 104, 2329; (b) Yamamoto Y., Yamazaki H., Inorg. Chim. Acta, 1994, 217, 121 Search in Google Scholar

[8] Yamamoto Y., Yamazaki H., J. Chem. Soc., Dalton Trans., 1989, 216 Search in Google Scholar

[9] Hallam M.F., Mingos D.M.P., Adatia T., McPartlin M., J. Chem. Soc., Dalton Trans., 1988, 335 Search in Google Scholar

[10] Albinati A., Dahmen K.H., Togni A., Venanzi L.M., Angew. Chem., Int. Ed. Engl., 1985, 24, 766 10.1002/anie.198507661Search in Google Scholar

[11] (a) Adams R.D., Arata I., Chen G., Lii J.Ch., Wang J.G., Organometallics, 1990, 9, 2350; (b) Adams R.D., Chen G., Wang J.G., Polyhedron, 1989, 8, 2521 Search in Google Scholar

[12] Yam V.W.W., Yeung P.K.Y., Cheung K.K., Angew. Chem. Int. Ed. Engl., 1996, 35, 739 10.1002/anie.199609211Search in Google Scholar

[13] Yam V.W.W., Yu K.L., Cheng E.Ch.Ch., Yeung P.K.Y., Cheung K.K., Zhu N.Y., Chem. Eur. J., 2002, 8, 4122 Search in Google Scholar

[14] Elliott G.P., Howard J.A.K., Nunn Ch.M., Stone F.G.A., J. Chem. Soc., Chem. Commun. 1986, 431 Search in Google Scholar

[15] Davies S.J., Elliott G.P., Howard J.A.K., Nunn Ch.M., Stone F.G.A., J. Chem. Soc., Dalton Trans., 1987, 2177 Search in Google Scholar

[16] Adams R.D., Wu W., Inorg. Chem., 1991, 30, 3605 10.1021/ic00019a007Search in Google Scholar

[17] Weiss D., Winter M., Fischer R.A., Yu Ch., Wichmann K., Frenking G., Chem. Commun., 2000, 2495 10.1039/b008133gSearch in Google Scholar

[18] Adams R.D., Chen G., Katahira D.A., Tanner J.T., Wu W., Inorg. Chem., 1990, 29, 3269 10.1021/ic00343a001Search in Google Scholar

[19] Adams R.D., Pompeo M.P., Wu W., Inorg. Chem., 1991, 30, 2425 Search in Google Scholar

[20] Hermans S., Khimyak T., Johnson B.F.G., J. Chem. Soc., Dalton Trans., 2001, 3295 () 10.1039/b105844bSearch in Google Scholar

[21] Adams R.D., Wu W., J. Cluster Sc., 1991, 2, 271 Search in Google Scholar

[22] Ito L.I., Sweet J.D., Mueting A.M., Pigno L.H., Schoondergang M.F.J., Stegerda J.J., Inorg. Chem., 1989, 28, 3696 Search in Google Scholar

[23] Knogstad D.A., Young, Jr. V.G., Pignolet L.H., Inorg. Chim. Acta, 1997, 264, 19 10.1016/S0020-1693(97)05587-4Search in Google Scholar

[24] Farrugia L.J., Organometallics, 1990, 9, 105 10.1021/om00115a016Search in Google Scholar

[25] Fumagalli A., Martinengo S., Galli D., Albinati A., Ganazzoli F., Inorg. Chem., 1989, 28, 2476 10.1021/ic00311a045Search in Google Scholar

[26] Couture Ch., Farrar D.H., J. Chem. Soc., Dalton Trans., 1987, 2245 Search in Google Scholar

[27] King W.D., Lukahart Ch.M., J. Cluster Sc., 1998, 9, 107 10.1023/A:1021933831065Search in Google Scholar

[28] Adams R.D., Qu Bo., J. Organomet. Chem., 2001, 620, 303 10.1016/S0022-328X(00)00788-9Search in Google Scholar

[29] Melník M., Coord. Chem. Rev., 1982, 47, 239 10.1016/0010-8545(82)85033-9Search in Google Scholar

[30] Spivak G.J., Hao L., Vittal J.J., Puddephatt R.J., J. Amer. Chem. Soc., 1996, 118, 225 Search in Google Scholar

[31] Hao L., Manojlovic-Muir L., Muir K.W., Puddephatt R.J., Spivak G.J., Vittal J.J., Yufit D., Inorg. Chim. Acta, 1997, 265, 65 10.1016/S0020-1693(97)05685-5Search in Google Scholar

[32] Tanase T., Horiuchi T., Yamamoto Y., Kobayashi K., J. Organomet. Chem., 1992, 440, 1 Search in Google Scholar

[33] Albinati A., Moor A., Pregosin P.S., Venanzi L.M., J. Amer. Chem. Soc., 1982, 104, 7672 10.1021/ja00390a055Search in Google Scholar

[34] Schnebeck R.D., Freisinger E., Glabé F., Lippert B., J. Amer. Chem. Soc., 2000, 122, 1381 10.1021/ja9931325Search in Google Scholar

[35] Spivk G.J., Vittal J.J., Puddephatt R.J., Inorg. Chem., 1998, 37, 5474 10.1021/ic980555jSearch in Google Scholar PubMed

[36] Navarro J.A.R., Freisinger E., Lippert B., Eur. J. Inorg. Chem., 2000, 147 10.1002/(SICI)1099-0682(200001)2000:1<147::AID-EJIC147>3.0.CO;2-ISearch in Google Scholar

[37] Elliott G.P., Howard J.A.K., Mise T., Nunn Ch.M., Stone F.G.A., J. Chem. Soc., Dalton Trans., 1987, 2189 Search in Google Scholar

[38] Rauter H., Mutikainen I., Blomberg M., Lock C.J.L., Amo-Ochoa P., Freisinger E., Randaccio L., et al., Angew. Chem. Int. Ed. Engl., 1997, 36, 1296 10.1002/anie.199712961Search in Google Scholar

[39] Hermans S., Khimyak T., Johnson B.F.G., J. Chem. Soc., Dalton Trans., 2001, 3295 10.1039/b105844bSearch in Google Scholar

[40] Adams R.D., Wu W., J. Cluster Sci., 1993, 4, 245 Search in Google Scholar

[41] Adams R.D., Hor T.S.A., Organometallics, 1984, 3, 1915 Search in Google Scholar

[42] Couture Ch., Farrar D.H., R.J. Goudsmit, Inorg. Chim. Acta, 1984, 89, L 29 10.1016/S0020-1693(00)82434-2Search in Google Scholar

[43] Couture Ch., Farrar D.H., J. Chem. Soc., Chem. Commun., 1985, 1971 Search in Google Scholar

[44] Couture Ch., Farrar D.H., J. Chem. Soc., Dalton Trans., 1986, 1395 Search in Google Scholar

[45] Couture Ch., Farrar D.H., J. Chem. Soc., Dalton Trans., 1987, 2253 Search in Google Scholar

[46] Henly T.J., Shapley J.R., Rheingold A.L., Geib S.J., Organometallics, 1988, 7, 441 10.1021/om00092a031Search in Google Scholar

[47] Kanters R.P.F., Bour J.J., Schlebos P.P.J., Bosman W.P., Behm H., Steggerda J.J., et al., Inorg. Chem., 1989, 28, 2591 10.1021/ic00312a017Search in Google Scholar

[48] Elliott G.P., Howard J.A.K., Mise T., Nunn C.M., Stone F.G.A., Angew. Chem. Int. Ed. Engl., 1986, 25, 190 10.1002/anie.198605831Search in Google Scholar

[49] Gould R.A.T., Pignolet L.H., Inorg. Chem., 1994, 33, 40 10.1021/ic00079a009Search in Google Scholar

[50] Ito L.N., Felicissimo A.M.P., Pignolet L.H., Inorg. Chem., 1991, 30, 387 Search in Google Scholar

[51] Holloway C.E., Melník M., Rev. Inorg. Chem., 2002, 22, 163 Search in Google Scholar

[52] Holloway C.E., Melník M., Rev. Inorg. Chem., 2003, 23, 125 Search in Google Scholar

[53] Holloway C.E., Melník M., Rev. Inorg. Chem., 2004, 24, 135 Search in Google Scholar

[54] Holloway C.E., Melník M., Rev. Inorg. Chem., 2004, 24, 301 Search in Google Scholar

[55] Holloway C.E., Melník M., Rev. Inorg. Chem., 2005, 25, 95 Search in Google Scholar

[56] Holloway C.E., Melník M., Main Group Met. Chem., 2006, 29, 73 10.1515/MGMC.2006.29.2.73Search in Google Scholar

[57] Holloway C.E., Melník M., Rev. Inorg. Chem., 2012, 32, 23 Search in Google Scholar

[58] Melník M., Sprusansky O., Holloway C.E., Rev. Inorg. Chem., 2012, 32, 111 10.1515/revic-2012-0008Search in Google Scholar

[59] Melník M., Mikuš P., Holloway C.E., Rev. Inorg. Chem., 2013, 33, 13 10.1515/revic-2013-0001Search in Google Scholar

[60] Melník M., Mikuš P., Holloway C.E., Rev. Inorg. Chem., 2014, 34, 25 10.1515/revic-2013-0010Search in Google Scholar

Received: 2014-2-7
Accepted: 2014-4-6
Published Online: 2014-11-1

© 2015 Milan Melník et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/chem-2015-0035/html
Scroll Up Arrow