Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 26, 2014

Atmospheric pressure plasma treatment of polyamide-12 foils

  • Jana Hanusová , Dušan Kováčik , Monika Stupavská , Mirko Černák and Igor Novák
From the journal Open Chemistry

Abstract

The surface of a polyamide-12 (PA-12) foil was modified in order to improve the adhesive properties by two types of atmospheric pressure plasma sources. The samples were characterized using contact angle measurement, adhesive properties measurement and X-ray photoelectron spectroscopy (XPS). The ageing of the plasma modification was also studied. A significant increase in wettability was observed at different treatment times. The same effect was also seen in the adhesive properties - the adhesion was increased almost 12 times for 10 s DCSBD treatment in comparison to untreated PA-12. XPS analysis confirmed chemical changes due to the plasma modification of the PA-12. It was concluded that both plasma sources improve the adhesive properties of PA-12, with DCSBD obtaining better results.

Graphical Abstract

References

[1] Kang G., Liu M., Lin B., Cao Y., Yuan Q., A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol), Polymer 2007, 48, 1167–1170. 10.1016/j.polymer.2006.12.046Search in Google Scholar

[2] Freger V., Gilron J., Belfer S., TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study, J. Memb. Sci., 2002, 209, 283–292. 10.1016/S0376-7388(02)00356-3Search in Google Scholar

[3] Bhattacharya A., Misra B.N., Grafting: a versatile means to modify polymers: Techniques, factors and applications, Prog. Polym. Sci., 2004, 29, 767–814. 10.1016/j.progpolymsci.2004.05.002Search in Google Scholar

[4] Borcia G., Dumitrascu N., Popa G., Influence of helium-dielectric barrier discharge treatments on the adhesion properties of polyamide-6 surfaces, Surf. Coat. Tech., 2005, 197, 316–321. 10.1016/j.surfcoat.2005.01.104Search in Google Scholar

[5] Liston E.M., Martinu L., Wertheimer M.R., Plasma surface modification of polymers for improved adhesion: a critical review, J. Adhes. Sci. Technol., 1993, 7, 1091–1127. 10.1163/156856193X00600Search in Google Scholar

[6] Pappas D., Bujanda A., Demaree J.D., Hirvinen J.K., Kosik W., Jensen R. et al., Surface modification of polyamide fibers and films using atmospheric plasmas, Surf. Coat. Tech., 2006, 201, 4384–4388. 10.1016/j.surfcoat.2006.08.068Search in Google Scholar

[7] Canal, Molina R., Bertran E., Erra P., Wettability, ageing and recovery process of plasma-treated polyamide 6, J. Adhes. Sci. Technol., 2004, 18, 1077–1089. 10.1163/1568561041257487Search in Google Scholar

[8] Popelka A., Novák I., Lehocký M., Junkar I., Mozetič M., Kleinová A. et al., A new route for chitosan immobilization onto polyethylene surface, Carbohyd. Polym., 2012, 90, 1501–1508. 10.1016/j.carbpol.2012.07.021Search in Google Scholar PubMed

[9] Ruddy A.C., McNally G.M., Nersisyan G., Graham W.G., Murphy W.R., The effect of Atmospheric Glow Discharge (APGD) Treatment on Polyetherimide, Polybutyleneterephthalate, and Polyamides, J. Plast. Film Sheet., 2006, 22, 103–119. 10.1177/8756087906064223Search in Google Scholar

[10] Dumitrascu N., Borcia C., Adhesion properties of polyamide-6 fibres treated by dielectric barrier discharge, Surf. Coat. Tech., 2006, 201, 1117–1123. 10.1016/j.surfcoat.2006.01.030Search in Google Scholar

[11] Novák I., Števiar M., Chodák I., Surface Energy and Adhesive Properties of Polyamide 12 Modified by Barrier and Radio-Frequency Discharge Plasma, Monatsh. Chem., 2006, 137, 943–952. 10.1007/s00706-006-0492-2Search in Google Scholar

[12] Hnilica J., Potočňáková L., Stupavská M., Kudrle V., Rapid surface treatment of polyamide 12 by microwave plasma jet, Appl. Surf. Sci., 2014, 288, 251–257. 10.1016/j.apsusc.2013.10.016Search in Google Scholar

[13] Černák M., Černáková Ľ., Hudec I., Kováčik D., Zahoranová A., Diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials, Eur. Phys. J-Appl. Phys., 2009, 47, 22806-22812. 10.1051/epjap/2009131Search in Google Scholar

[14] Šimor M., Ráheľ J., Vojtek P., Černák M., Brablec A., Atmospheric-pressure diffuse coplanar surface discharge for surface treatments, Appl. Phys. Lett., 2002, 81, 2716-2718. 10.1063/1.1513185Search in Google Scholar

[15] Černák M., Kováčik D., Ráheľ J., Sťahel P., Zahoranová A., Kubincová J. et al., Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing, Plasma Phys. Control. Fusion, 2011, 53, 124031 (8pp). 10.1088/0741-3335/53/12/124031Search in Google Scholar

[16] Buršíková V., Sťahel P., Navrátil Z., Buršík J., Janča J., Vyhodnocení povrchové energie materiálu ošetřeného plazmatem, metodou měření kontaktního úhlu, Masaryk University, Brno, 2004. Search in Google Scholar

[17] Fang Z., Xie X., Yang H., Qiu Y, Kuffel E., Comparison of surface modification of polypropylene film by filamentary DBD at atmospheric pressure and homogeneous DBD at medium pressure in air, J. Phys. D: Appl. Phys., 2009, 42, 085204 (9pp). 10.1088/0022-3727/42/8/085204Search in Google Scholar

[18] Massines F., Gouda G., A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure, J. Phys. D: Appl. Phys., 1998, 31, 3411-3420. 10.1088/0022-3727/31/24/003Search in Google Scholar

Received: 2014-1-31
Accepted: 2014-5-7
Published Online: 2014-11-26

© 2015 Jana Hanusová et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.12.2023 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0049/html
Scroll to top button