Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 4, 2014

A comparison of carbon tetrachloride decomposition using spark and barrier discharges

  • Bogdan Ulejczyk , Krzysztof Krawczyk , Michał Młotek , Krzysztof Schmidt-Szałowski , Łukasz Nogal and Bolesław Kuca
From the journal Open Chemistry


The decomposition of CCl4 in air was investigated at atmospheric pressure in two discharges. Reactors used to generate electrical discharges were powered by the same electric power supply. In both reactors, nearly 90% conversion of CCl4 was obtained. All chlorine was in the form of Cl2 in the process carried out in the barrier discharge, while in the spark discharge, COCl2 was formed. The conversion of CCl4 to COCl2 ranged from 2 to 12%. NO was formed in both discharges but the NO content in the gas leaving the reactors was 1.7–2.7% for the spark discharge and 0.045–0.06% for the barrier discharge. O3 was produced only in the barrier discharge and its content ranged from 0.1 to 0.2%.

Graphical Abstract


[1] Sun Y., Chmielewski A.G., Bułka S., Zimek Z., Influence of base gas mixture on decomposition of 1,4-dichlorobenzene in an dlectron beam generated plasma reactor, Plasma Chem. Plasma P., 2006, 26, 347-359 10.1007/s11090-006-9029-zSearch in Google Scholar

[2] Raniszewski G., Kałaciński Z., Szymański Ł., Influence of contaminants on arc properties during treatment of polluted soils in electric arc plasma, J. Adv. Oxid. Technol., 2012,15, 34-40 10.1515/jaots-2012-0104Search in Google Scholar

[3] Kirkpatrick M.J., Finney W.C., Locke B.R., Chlorinated organic compound removal by gas phase pulsed streamer corona electrical discharge reticulated vitreous carbon electrodes, Plasmas Polym., 2003,8, 165-177 Search in Google Scholar

[4] Han S.B., Oda T., Improvement of the energy efficiency in the decomposition of dilute trichloroethylene by the barrier discharge, IEEE T. Ind. Appl.,2005, 41, 1343-1349 10.1109/TIA.2005.855046Search in Google Scholar

[5] Magureanu M., Mandache N.D., Parvulescu V.I., Chlorinated organic compounds decomposition in a dielectric barrier discharge, Plasma Chem. Plasma P., 2007, 27, 679-690 10.1007/s11090-007-9103-1Search in Google Scholar

[6] Ulejczyk B., Krawczyk K., Młotek M., Schmidt-Szałowski K., Nogal Ł., Kuca B., Decomposition of carbon tetrachloride in the reactor of dielectric barrier discharge with different power supplies, Eur. Phys. J.- Appl. Phys., 2013, 61, 24324p1-24324p7 10.1051/epjap/2012120407Search in Google Scholar

[7] Krawczyk K., Jodzis S., Lamenta A., Kostka K., Ulejczyk B., Schmidt-Szałowski K., Carbon tetrachloride decomposition by pulsed spark discharges in oxidative and nonoxidative conditions, IEEE T. Plasma Sci., 2011, 39, 3203-3210 10.1109/TPS.2011.2165300Search in Google Scholar

[8] Krawczyk K., Ulejczyk B., Decomposition of chloromethanes in gliding discharges, Plasma Chem. Plasma P.,2003, 23, 265-281. 10.1023/A:1022916018245Search in Google Scholar

[9] Indarto A., Yang D.R., Azhari C.H., Mohtar W.H.W., Choi J.W., Lee H., et al., Advanced VOCs decomposition method by gliding arc plasma, Chem. Eng. J., 2007, 131, 337-341 10.1016/j.cej.2006.11.009Search in Google Scholar

[10] Bo Z., Yan J.H., Li X.D., Chi Y., Cen K.F., Cheron B.G., Effects of oxygen and water vapor on volatile organic compounds decomposition using gliding arc gas discharge, Plasma Chem. Plasma P., 2007, 27, 546-558 10.1007/s11090-007-9081-3Search in Google Scholar

[11] Jasiński M., Szczucki P., Dors M., Mizeraczyk J., Lubański M., Zakrzewski Z., Decomposition of fluorohydrocarbons in atmospheric-pressure flowing air using coaxial-line-based microwave torch plasma, Czech. J. Phys., 2000, 50/S3, 285-288 10.1007/BF03165896Search in Google Scholar

[12] Foglein K.A., Szepvolgyi J., Dombi A., Decomposition of halogenated methanes in oxygen-free gas mixtures by the use of a silent electric discharge, Chemosphere., 2003, 50, 9-13 10.1016/S0045-6535(02)00372-7Search in Google Scholar

[13] Indarto A., Choi J.W., Lee H., Song H.K., Discharge characteristics of a gliding-arc plasma in chlorinated methanes diluted in atmospheric air, Plasma Devices Oper., 2006, 14, 15-26 10.1080/10519990500494898Search in Google Scholar

[14] Kovacs T., Turanyi T., Szepvolgyi J., CCl4 decomposition in RF thermal plasma in inert and oxidative environments, Plasma Chem. Plasma P., 2010, 30, 281-286 10.1007/s11090-010-9219-6Search in Google Scholar

[15] Krawczyk K., Ulejczyk B., Plasma Chem. Plasma P., Conversion in Gliding Discharge, 2004, 24, 155-167 10.1023/B:PCPP.0000013196.20306.8bSearch in Google Scholar

[16] Krawczyk K., Ulejczyk B., Song H.K., Lamenta A., Paluch B., Schmidt-Szałowski K., Plasma-catalytic Reactor for Decomposition of Chlorinated Hydrocarbons, Plasma Chem. Plasma P., 2009, 29, 2741 10.1007/s11090-008-9159-6Search in Google Scholar

[17] Herron J.T, Huie R.E., Rate Constants for the Reactions of Atomic Oxygen (O 3 P) with Organic Compounds in the Gas Phase, J. Phys. Chem. Ref. Data, 1973, 2, 467-518 10.1063/1.3253125Search in Google Scholar

[18] DeMare G.R., Huybrechts G., Rate constants for the recombination of CCl3 radicals and for their reactions with Cl, Cl2 and HCl in the gas phase, T. Faraday Soc., 1968, 64, 1311-1318 10.1039/TF9686401311Search in Google Scholar

[19] Emel’kin V.A., Marusin V.V., Reaction of atomic nitrogen with CCl4, SiCl4, and BCl3, Kinet. Catal.+, 1979, 20, 835-840, (in Russian) Search in Google Scholar

[20] Atkinson R., Baulch D.L., Cox R.A., Hampson R.F. Jr., Kerr J.A., Rossi M.J., et al., J. Phys. Chem. Ref. Data, 1997, 26, 521-1011 10.1063/1.556011Search in Google Scholar

[21] Lee W.J., Chen C.Y., Lin W.C., Wang Y.T., Chin C.J., Phosgene formation from the decomposition of 1,1-C2H2Cl2 contained gas in an RF plasma reaktor, J. Hazard. Mater., 1996, 48, 51-67 10.1016/0304-3894(95)00145-XSearch in Google Scholar

[22] Koch M., Cohn D.R., Patrick R.M., Schuetze M.P., Bromberg L., Reilly D., et al., Electron Beam Atmospheric Pressure Cold Plasma Decomposition of Carbon Tetrachloride and Trichloroethylene, Envir. Sci. Technol., 1995, 29, 2946-2952 10.1021/es00012a009Search in Google Scholar PubMed

[23] Penetrante B.M., Hsiao M.C., Bardsley J.N., Merrit B.T., Vogtlin G.E., Wallman P.H., et al., Electron beam and pulsed corona processing of carbon tetrachloride in atmospheric pressure gas streams, Phys. Lett. A, 1995, 209, 69-77 10.1016/0375-9601(95)00789-4Search in Google Scholar

[24] Kovacs T., Turanyi T., Foglein K., Szepvolgyi J., Kinetic Modeling of the Decomposition of Carbon Tetrachloride in Thermal Plasma, Plasma Chem. Plasma P., 2005, 25, 109-119 10.1007/s11090-004-8837-2Search in Google Scholar

[25] Indarto A., Choi J.W., Lee H., Song H.K., Decomposition of greenhouse gases by plasma, Environ. Chem. Lett., 2008, 6, 215-222 10.1007/s10311-008-0160-3Search in Google Scholar

[26] Jeoung S.C., Choo K.Y., Benson S.W., Very-low-pressure-reactor chemiluminescence studies on nitrogen atom reactions with chloroform and deuteriochloroform, J. Phys. Chem.-US, 1991, 95, 7282-7290 10.1021/j100172a035Search in Google Scholar

[27] Goldfarb L., Burkholder J.B., Ravishankara A.R., Kinetics of the O + ClO Reaction, J. Phys. Chem. A, 2001, 105, 5402-5409 10.1021/jp0100351Search in Google Scholar

[28] Park C., Rates of reactions chlorine monoxide + chlorine monoxide .far. molecular chlorine + molecular oxygen and chlorine monoxide + atomic oxygen .far. atomic chlorine + molecular oxygen at elevated temperatures, J. Phys. Chem.-US, 1976, 80, 565-571 10.1021/j100547a002Search in Google Scholar

[29] Baulch D.L., Duxbury J., Grant S.J., Montague D.C., Evaluated kinetic data for high temperature reactions. Volume 4 Homogeneous gas phase reactions of halogen- and cyanide- containing species, J. Phys. Chem. Ref. Data, 1981, 10, 1-721 Search in Google Scholar

[30] Kukui A., Roggenbuck J., Schindler R.N., Mechanism and rate constants for the reactions of Cl atoms with HOCl, CH3OCl and tert-C4H9OCl, Ber. Bunsenges. Phys. Chem., 1997,101, 281-286 10.1002/bbpc.19971010217Search in Google Scholar

[31] Xu Z.F., Zhu R.S., Lin M.C., Ab initio studies of ClOx reactions. 3. Kinetics and mechanism for the OH + OClO reaction, J. Phys. Chem. A, 2003, 107, 1040-1049 10.1021/jp021183+Search in Google Scholar

[32] Lord A., Pritchard H.O., Thermodynamics of the reaction between carbon dioxide and carbon tetrachloride, J. Chem. Thermodyn., 1969, 1, 495-498 10.1016/0021-9614(69)90007-XSearch in Google Scholar

[33] Cox R.A., Derwent R.G., A.E.J. Eggleton, H.J. Reid, Kinetics of chlorine oxide radicals using modulated photolysis. Part 2 -ClO and ClOO radical kinetics in the photolysis of Cl2+O2+N2 mixtures, J. Chem. Soc. Faraday T. 1, 1979, 75, 1648-1666 10.1039/f19797501648Search in Google Scholar

[34] Davies P.B., Thrush B.A., Reactions of oxygen atoms with hydrogen cyanide, cyanogen chloride and cyanogen bromide, T. Faraday Soc., 1968, 64, 1836-1843 10.1039/tf9686401836Search in Google Scholar

[35] Becker K.H., Kurtenbach R., Schmidt F., Wiesen P., Kinetics of the NCO radical reacting with atoms and selected molecules, Combust. Flame, 2000, 120, 570-577 10.1016/S0010-2180(99)00108-XSearch in Google Scholar

[36] Aleksandrov N. L., Bazelyan E. M., Ionization processes in spark discharge plasmas, Plasma Sources Sci. T., 1999, 8, 285-294 10.1088/0963-0252/8/2/309Search in Google Scholar

[37] Kado S., Sekine Y., Nozaki T., Okazaki K., Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion, Catal. Today, 2004, 89, 47-55 10.1016/j.cattod.2003.11.036Search in Google Scholar

[38] Bye C.A., Scheeline A., Electron density profiles in single spark discharges, J. Quant. Spectrosc. Ra., 1995, 53, 75-93. 10.1016/0022-4073(94)00085-LSearch in Google Scholar

[39] Kogelschatz U., Elianson B., Egli W., Dielectric-barrier discharges. Principle and applications, J. Phys. IV, 1997, 7, C4-47-C4-66 10.1051/jp4:1997405Search in Google Scholar

[40] Jodzis S., Temperature effects under ozone synthesis process conditions, Eur. Phys. J.- Appl. Phys., 2013, 61, 24319p1-24319p9 10.1051/epjap/2012120415Search in Google Scholar

Received: 2014-1-14
Accepted: 2014-5-30
Published Online: 2014-12-4

© 2015 Bogdan Ulejczyk et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.2.2023 from
Scroll Up Arrow