Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 1, 2014

Diffuse Coplanar Surface Barrier Discharge in Artificial Air: Statistical Behaviour of Microdischarges

Jan Čech , Jana Hanusová , Pavel Sťahel and Mirko Černák
From the journal Open Chemistry


Diffuse Coplanar Surface Barrier Discharge (DCSBD) is a novel type of atmospheric-pressure plasma source developed for high-speed large-area surface plasma treatments. The statistical behavior of microdischarges of DCSBD generated in artificial air atmosphere was studied using time-correlated optical and electrical measurements. Changes in behavior of microdischarges are shown for various electrode gap widths and input voltage amplitudes. They are discussed in the light of correlation of the number of microdischarges and the number of unique microdischarges’ paths per discharge event.

The ‘memory effect’ was observed in the behavior of microdischarges and it manifests itself in a significant number of microdischarges reusing the path of microdischarges from previous half-period. Surprisingly this phenomenon was observed even for microdischarges of the same half-period of the discharge, where mechanisms other than charge deposition have to be involved. The phenomenon of discharge paths reuse is most pronounced for wide electrode

Graphical Abstract


[1] Kogelschatz U., Dielectric-barrier Discharges: Their History, Discharge Physics and Industrial Applications, Plasma Chem. Plasma Process., 2003, 23, 1–46 Search in Google Scholar

[2] Roth J. R., Industrial Plasma Engineering, Taylor & Francis, Bristol and Philadelphia, 2001 10.1887/0750308257Search in Google Scholar

[3] Pappas D., Status and potential of atmospheric plasma processing of materials, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 2011, 29, 020801 10.1116/1.3559547Search in Google Scholar

[4] Temmerman E., Akishev Y., Trushkin N., Leys C., Verschuren J., Surface modification with a remote atmospheric pressure plasma: dc glow discharge and surface streamer regime, J. Phys. D. Appl. Phys., 2005, 38, 505–509 10.1088/0022-3727/38/4/001Search in Google Scholar

[5] Council regulation (EC) 1907/2006 of 18 december 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, OJ L 136/3, 2007 Search in Google Scholar

[6] Chirokov A., Gutsol A., Fridman A., Sieber K. D., Grace J. M., Robinson K. S., Analysis of two-dimensional microdischarge distribution in dielectric-barrier discharges, Plasma Sources Sci. Technol., 2004, 13, 623–635 10.1088/0963-0252/13/4/011Search in Google Scholar

[7] Wagner H.-E., Brandenburg R., Kozlov K. V., Sonnenfeld A., Michel P., Behnke J. F., The barrier discharge: basic properties and applications to surface treatment, Vacuum, 2003, 71, 417–436 10.1016/S0042-207X(02)00765-0Search in Google Scholar

[8] Rohani V., Bauville G., Lacour B., Puech V., Duminica F. D., Silberberg E., Study of the treatment’s homogeneity in plasma assisted chemical vapour deposition by atmospheric pressure dielectric barrier discharge, Surf. Coatings Technol., 2008, 203, 862–867 10.1016/j.surfcoat.2008.06.135Search in Google Scholar

[9] Kanazawa S., Kogoma M., Moriwaki T., Okazaki S., Stable glow plasma at atmospheric pressure, J. Phys. D. Appl. Phys., 1988, 21, 838–840 10.1088/0022-3727/21/5/028Search in Google Scholar

[10] Kong M. G., Electrically efficient production of a diffuse nonthermal atmospheric plasma, IEEE Trans. Plasma Sci., 2003, 31, 7–18 10.1109/TPS.2003.808884Search in Google Scholar

[11] Meiners A., Leck M., Abel B., Efficiency enhancement of a dielectric barrier plasma discharge by dielectric barrier optimization, Rev. Sci. Instrum., 2010, 81, 113507 10.1063/1.3501963Search in Google Scholar PubMed

[12] Foest R., Kindel E., Ohl A., Stieber M., Weltmann K.-D., Non-thermal atmospheric pressure discharges for surface modification, Plasma Phys. Control. Fusion, 2005, 47, B525–B536 10.1088/0741-3335/47/12B/S38Search in Google Scholar

[13] Samukawa S., Hori M., Rauf S., Tachibana K., Bruggeman P., Kroesen G., et al., The 2012 Plasma Roadmap, J. Phys. D. Appl. Phys., 2012, 45, 253001 10.1088/0022-3727/45/25/253001Search in Google Scholar

[14] Goossens O., Dekempeneer E., Vangeneugden D., Van de Leest R., Leys C., Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation, Surf. Coatings Technol., 2001, 142–144, 474–481 10.1016/S0257-8972(01)01140-9Search in Google Scholar

[15] Bogaerts A., Neyts E., Gijbels R., van der Mullen J., Gas discharge plasmas and their applications, Spectrochim. Acta Part B At. Spectrosc., 2002, 57, 609–658 10.1016/S0584-8547(01)00406-2Search in Google Scholar

[16] Borcia G., Anderson C. A., Brown N. M. D., Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form, Plasma Sources Sci. Technol., 2003, 12, 335–344 10.1088/0963-0252/12/3/306Search in Google Scholar

[17] Pietsch G. J., Gibalov V. I., Dielectric barrier discharges and ozone synthesis, Pure Appl. Chem., 1998, 70, 1169–1174 10.1351/pac199870061169Search in Google Scholar

[18] Kogelschatz U., Eliasson B., Egli W., Dielectric-Barrier Discharges. Principle and Applications, Le J. Phys. IV, 1997, 07, C4-47–C4-66 10.1051/jp4:1997405Search in Google Scholar

[19] Šimor M., Ráhel’ J., Vojtek P., Černák M., Brablec A., Atmospheric-pressure diffuse coplanar surface discharge for surface treatments, Appl. Phys. Lett., 2002, 81, 2716 10.1063/1.1513185Search in Google Scholar

[20] Černák M., Ráhel’ J., Kováčik D., Šimor M., Brablec A., Slavíček P., Generation of Thin Surface Plasma Layers for Atmospheric-Pressure Surface Treatments, Contrib. to Plasma Phys., 2004, 44, 492–495 10.1002/ctpp.200410069Search in Google Scholar

[21] Černák M., Kováčik D., Ráhel’ J., St’ahel P., Zahoranová A., Kubincová J., et al., Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing, Plasma Phys. Control. Fusion, 2011, 53, 12, 124031 10.1088/0741-3335/53/12/124031Search in Google Scholar

[22] Eliasson B., Hirth M., Kogelschatz U., Ozone synthesis from oxygen in dielectric barrier discharges, J. Phys. D. Appl. Phys., 1987, 20, 1421–1437 10.1088/0022-3727/20/11/010Search in Google Scholar

[23] Gibalov V. I., Pietsch G. J., The development of dielectric barrier discharges in gas gaps and on surfaces, J. Phys. D. Appl. Phys., 2000, 33, 2618–2636 10.1088/0022-3727/33/20/315Search in Google Scholar

[24] Kogelschatz U., Collective phenomena in volume and surface barrier discharges, J. Phys. Conf. Ser., 2010, 257, 012015 10.1088/1742-6596/257/1/012015Search in Google Scholar

[25] Bruggeman P., Brandenburg R., Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics, J. Phys. D. Appl. Phys., 2013, 46, 464001 10.1088/0022-3727/46/46/464001Search in Google Scholar

[26] Hoder T., Šíra M., Kozlov K. V., Wagner H.-E., Investigation of the coplanar barrier discharge in synthetic air at atmospheric pressure by cross-correlation spectroscopy, J. Phys. D. Appl. Phys., 2008, 41, 035212 10.1088/0022-3727/41/3/035212Search in Google Scholar

[27] Hoder T., Šíra M., Kozlov K. V., Wagner H.-E., 3D Imaging of the Single Microdischarge Development in Coplanar Barrier Discharges in Synthetic Air at Atmospheric Pressure, Contrib. to Plasma Phys., 2009, 49, 381–387 10.1002/ctpp.200910035Search in Google Scholar

[28] Cech J., Hanusova J., Stahel P., Slavicek P., Diffuse Coplanar Surface Barrier Discharge In Nitrogen: Microdischarges Statistical Behavior, Acta Polytech., 2013, 53, 127–130 10.14311/1731Search in Google Scholar

[29] Čech J., Sťahel P., Navrátil Z., The influence of electrode gap width on plasma properties of diffuse coplanar surface barrier discharge in nitrogen, Eur. Phys. J. D, 2009, 54, 259–264 10.1140/epjd/e2009-00013-1Search in Google Scholar

[30] Čech J., St’ahel P., Navrátil Z., Černák M., Space and Time Resolved Optical Emission Spectroscopy of Diffuse Surface Coplanar Barrier Discharge in Nitrogen, Chem. List., 2008, 102, 1348–1351 Search in Google Scholar

[31] Skácelová D., Danilov V., Schäfer J., Quade A., Sťahel P., Černák M., et al., Room temperature plasma oxidation in DCSBD: A new method for preparation of silicon dioxide films at atmospheric pressure, Mater. Sci. Eng. B, 2013, 178, 651–655. 10.1016/j.mseb.2012.10.017Search in Google Scholar

[32] Prysiazhnyi V., Vasina P., Panyala N. R., Havel J., Cernak M., Air DCSBD plasma treatment of Al surface at atmospheric pressure, Surf. Coatings Technol., 2012, 206, 3011–3016 10.1016/j.surfcoat.2011.12.039Search in Google Scholar

[33] Homola T., Matoušek J., Medvecká V., Zahoranová A., Kormunda M., Kováčik D., et al., Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning, Appl. Surf. Sci., 2012, 258, 7135–7139 10.1016/j.apsusc.2012.03.188Search in Google Scholar

[34] Homola T., Matoušek J., Hergelová B., Kormunda M., Wu L. Y. L., Černák M., Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma, Polym. Degrad. Stab., 2012, 97, 2249–2254 10.1016/j.polymdegradstab.2012.08.001Search in Google Scholar

[35] Černáková L., Szabová R., Wolfová M., Buček A., Černák M., Surface modification of polypropylene nonwoven after plasma activation at atmospheric pressure, Fibres Text. East. Eur., 2007, 15, 121–123 Search in Google Scholar

[36] Massines F., Gherardi N., Naudé N., Ségur P., Recent advances in the understanding of homogeneous dielectric barrier discharges, Eur. Phys. J. Appl. Phys., 2009, 47, 22805 10.1051/epjap/2009064Search in Google Scholar

[37] Fanelli F., d’Agostino R., Fracassi F., Effect of Gas Impurities on the Operation of Dielectric Barrier Discharges Fed with He, Ar, and Ar-C3F6, Plasma Process. Polym., 2011, 8, 557–567 10.1002/ppap.201000179Search in Google Scholar

[38] Brandenburg R., Navrátil Z., Jánský J., St’ahel P., Trunec D., Wagner H.-E., The transition between different modes of barrier discharges at atmospheric pressure, J. Phys. D. Appl. Phys., 2009, 42, 085208 10.1088/0022-3727/42/8/085208Search in Google Scholar

[39] Fang Z., Qiu Y., Zhang C., Kuffel E., Factors influencing the existence of the homogeneous dielectric barrier discharge in air at atmospheric pressure, J. Phys. D. Appl. Phys., 2007, 40, 1401–1407 10.1088/0022-3727/40/5/013Search in Google Scholar

[40] Černák M., Černáková L., Hudec I., Kováčik D., Zahoranová A., Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, Eur. Phys. J. Appl. Phys., 2009, 47, 22806 10.1051/epjap/2009131Search in Google Scholar

[41] Štefečka M., Kando M., Černák M., Korzec D., Finantu-Dinu E. G., Dinu G. L., et al., Spatial distribution of surface treatment efficiency in coplanar barrier discharge operated with oxygen–nitrogen gas mixtures, Surf. Coatings Technol., 2003, 174–175, 553–558 10.1016/S0257-8972(03)00332-3Search in Google Scholar

[42] Akishev Y., Aponin G., Balakirev A., Grushin M., Karalnik V., Petryakov A., et al., ‘Memory’ and sustention of microdischarges in a steady-state DBD: volume plasma or surface charge?, Plasma Sources Sci. Technol., 2011, 20, 024005 10.1088/0963-0252/20/2/024005Search in Google Scholar

[43] Bogaczyk M., Nemschokmichal S., Wild R., Stollenwerk L., Brandenburg R., Meichsner J., et al., Development of Barrier Discharges: Operation Modes and Structure Formation, Contrib. to Plasma Phys., 2012, 52, 847–855 10.1002/ctpp.201200041Search in Google Scholar

[44] Chirokov A., Gutsol A., Fridman A., Atmospheric pressure plasma of dielectric barrier discharges, Pure Appl. Chem., 2005, 77, 487–495 10.1351/pac200577020487Search in Google Scholar

[45] Akishev Y., Aponin G., Balakirev A., Grushin M., Karalnik V., Petryakov A., et al., Spatial-temporal behavior of individual microdischarges in dielectric barrier discharge, Acta Tech. ČSAV (Československá Akad. Věd), 2011, 56, T3–T14 Search in Google Scholar

[46] Marković V. L., Petrović Z. L., Pejović M. M., Surface recombination of atoms in a nitrogen afterglow, J. Chem. Phys., 1994, 100, 8514-8521 10.1063/1.466750Search in Google Scholar

[47] Kettlitz M., Höft H., Hoder T., Reuter S., Weltmann K.-D., Brandenburg R., On the spatio-temporal development of pulsed barrier discharges: influence of duty cycle variation, J. Phys. D. Appl. Phys., 2012, 45, 245201 10.1088/0022-3727/45/24/245201Search in Google Scholar

[48] Šimek M., Ambrico P. F., De Benedictis S., Dilecce G., Prukner V., Schmidt J., N2(A3 Σ+u) behaviour in a N2 –NO surface dielectric barrier discharge in the modulated ac regime at atmospheric pressure, J. Phys. D. Appl. Phys., 2010, 43, 124003 10.1088/0022-3727/43/12/124003Search in Google Scholar

[49] Bogaczyk M., Nemschokmichal S., Wild R., Stollenwerk L., Brandenburg R., Meichsner J., et al., Development of Barrier Discharges: Operation Modes and Structure Formation, Contrib. to Plasma Phys., 2012, 52, 847–855 10.1002/ctpp.201200041Search in Google Scholar

[50] Manley T. C., Electric characteristics of the ozonator discharge, Trans. Electrochem. Soc., 1943, 84, 83-96 10.1149/1.3071556Search in Google Scholar

[51] Ráhel’ J., Szalay Z., Morávek T., DBD breakdown voltage at elevated temperatures, Book of abstracts, 5th Central European Symposium on Plasma Chemistry (25-29 August 2013, Balatonalmádi, Hungary), RCNS HAS Budapest, Hungary, 2013, 115–116 Search in Google Scholar

[52] Allegraud K., Guaitella O., Rousseau A., Spatio-temporal breakdown in surface DBDs: evidence of collective effect, J. Phys. D. Appl. Phys., 2007, 40, 7698–7706 10.1088/0022-3727/40/24/017Search in Google Scholar

[53] Dong L., Yin Z., Li X., Chai Z., Wang L., Spatiotemporal dynamics of discharge filaments in dielectric barrier discharges, J. Electrostat., 2003, 57, 243–250 10.1016/S0304-3886(02)00164-XSearch in Google Scholar

[54] Kashiwagi Y., Itoh H., Synchronization of positive surface streamers triggered by vacuum ultraviolet in atmosphere, J. Phys. D. Appl. Phys., 2006, 39, 113–118 10.1088/0022-3727/39/1/017Search in Google Scholar

[55] Hoder, T., Studium filamentu koplanárního bariérového výboje, PhD thesis, Masaryk University, Brno, Czech Republic, 2009, (in Czech) Search in Google Scholar

Received: 2014-1-22
Accepted: 2014-5-8
Published Online: 2014-12-1

© 2015 Jan Čech et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 10.12.2022 from
Scroll Up Arrow