Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 22, 2014

Polylactic acid surface activation by atmospheric pressure dielectric barrier discharge plasma

  • Beáta Hergelová , Anna Zahoranová , Dušan Kováčik , Monika Stupavská and Mirko Černák
From the journal Open Chemistry


Polylactic acid (PLA) is suitable for applications in packaging and biomedicine due to its biodegradability. To improve PLA surface adhesion a plasma-chemical treatment using nonthermal plasma generated in ambient air via diffuse coplanar surface barrier discharge (DCSBD) was used. The optimal treatment time and power were investigated. Interaction between active plasma species and the polymer surface, and the resulting surface changes were studied by contact angle measurement, surface energy determination, FTIR, and XPS. The most hydrophilic surface was obtained after only 3–4 s treatment. Treatment up to 10 s did not damage the polymer but longer treatments (30 and 60 s) caused partial degradation. The plasma broke C-C/C-H bonds and formed more C-O, O-C=O and C-O-C bonds. During storage surface oxygen decreased and a negligible amount of nitrogen was adsorbed. The oxygen-containing functional groups probably sank into the PLA volume after treatment.

Graphical Abstract


[1] Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; Wiley: New York, 1982. Search in Google Scholar

[2] Drumright R.E., Gruber P., Henton D.E, Polylactic Acid Technology, Adv. Mater., 2000, 12, 1841-1946. 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-ESearch in Google Scholar

[3] Scott G., Invited review `Green’ polymers, Polym. Degrad. Stab., 2001, 68(1), 1-7. Search in Google Scholar

[4] Kennedy J.F., Shimizu J., Biotechnology and bioactive polymers, Plenum Press, New York, 1994. Search in Google Scholar

[5] Lasprilla A., Martinez G., Lunelli B., Jardini A., Filho R., Poly-lactic acid synthesis for application in biomedical devices – A review, Biotechnol. Adv., 2012, 30, 321-328. 10.1016/j.biotechadv.2011.06.019Search in Google Scholar

[6] Yang J., Bei J., Wang S., Improved cell affinity of poly(D,L-lactide) film modified by anhydrous ammonia plasma treatment, Polym. Advan. Technol., 2002, 13, 220-226. 10.1002/pat.177Search in Google Scholar

[7] Ferreira B., Pinheiro L. Nascente P., Ferreira M., Duek E., Plasma surface treatments of poly(l-lactic acid) (PLLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), Mat. Sci. Eng. C, 29, 806-813. 10.1016/j.msec.2008.07.026Search in Google Scholar

[8] Guowei Z., Junping G., Qiang G., Yashao C., Surface modification of biodegradable poly(D,L-lactic acid) by nitrogen and nitrogen/hydrogen plasma for improving surface hydrophilicity, Plasma Sci. Technol., 2011, 13, 230-234. 10.1088/1009-0630/13/2/20Search in Google Scholar

[9] De Geyter N., Morent R., Desmet T., Trentesaux M., Gengembre L., Dubruel P. et al., Plasma modification of polylactic acid in a medium pressure DBD, Surf. Coat. Tech., 2010, 204, 3272-3279. 10.1016/j.surfcoat.2010.03.037Search in Google Scholar

[10] Černák M., Černáková L., Hudec I., Kováčik D., Zahoranová A., Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, Eur. Phys. J. Appl. Phys., 2009, 47, 22806-22811. 10.1051/epjap/2009131Search in Google Scholar

[11] Homola T., Matoušek J., Hergelová B., Kormunda M., Wu L.Y.L., Černák M., Activation of poly(methyl methacrylate) surfaces by atmospheric pressure plasma, Polym. Degrad. Stab., 2012, 97, 886-892. 10.1016/j.polymdegradstab.2012.03.029Search in Google Scholar

[12] Homola T., Matoušek J., Hergelová B., Kormunda M., Wu L.Y.L., Černák M., Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma, Polym. Degrad. Stab., 2012, 97, 2249-2254. 10.1016/j.polymdegradstab.2012.08.001Search in Google Scholar

[13] Medvecká V., Zahoranová A., Kováčik D., Greguš J., The effect of surface cleaning and removing of organic contaminants from silicon substrate and ITO glass by atmospheric pressure non-thermal plasma, Chem. Listy, 2012, 106, 1455-1459. Search in Google Scholar

[14] Hergelová B., Kováčik D., Zahoranová A., Bónová L., Pleceník T. and Černák M., PTFE sheets surface cleaning and activation via low-temperature plasmas, In: Országh J., Papp P., Matejčík Š., Danko M. (Eds.), Book of Contributed Papers: 19th Symposium on Application of Plasma Processes and Workshop on Ion Mobility Spectrometry (26-31 Jan uary 2013, Vrátna, Slovakia), Comenius University in Bratislava, 2013, 166-170. Search in Google Scholar

[15] Bónová L., Zahoranová A., Kováčik D., Černák M., Deposition of polymer films on aluminium surface using atmospheric-pressure plasma, Chem. Listy, 2012, 106, 1431-1434. Search in Google Scholar

[16] Krumpolec R., Zahoranová A., Černák M., Kováčik D., Chemical and physical evaluation of hydrophobic pp-HMDSO layers deposited by plasma polymerization at atmospheric pressure, Chem. Listy,2012, 106, 1450-1454. Search in Google Scholar

[17] Reno F., D’Angelo D., Gottardi G., Rizzi M., Aragno D., Piacenza G. et al., Atmospheric pressure plasma surface sodification of poly(D,L-lactic acid) increases fibroblast, osteoblast and keratinocyte adhesion and proliferation, Plasma Process. Polym., 2012, 9, 491-502 10.1002/ppap.201100139Search in Google Scholar

Received: 2014-1-31
Accepted: 2014-5-7
Published Online: 2014-12-22

© 2015 Beáta Hergelová et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.12.2023 from
Scroll to top button