Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 22, 2014

Time resolved optical emission spectroscopy in power modulated atmospheric pressure plasma jet

Jaroslav Hnilica, Lucia Potočňáková and Vít Kudrle
From the journal Open Chemistry


In this paper, the effects of the power modulation on atmospheric pressure plasma jet, operated in Ar+2%N2 mixture, are studied. Time resolved optical emission spectroscopy is used for the investigation. From line and band intensities, the excitation, vibration and rotation temperatures are calculated. Their evolution during the modulation period exhibits a strong dependence on modulation frequency. For higher modulation frequencies, there is significant discrepancy in rotational temperatures calculated from OH spectra and from N2+ spectra, which indicates that thermalisation time can reach milliseconds.

Graphical Abstract


[1] Kogelschatz U., Dielectric-barrier discharges: Their history, discharge physics and industrial applications, Plasma Chem. Plasma Process., 2003 23, 1-46. Search in Google Scholar

[2] Wagner H.E., Brandenburg R., Kozlov K.V., Sonnenfeld A., Michel P., Behnke J.F., The barrier discharge: Basic properties and applications to surface treatment, Vacuum, 2003, 71, 417-436. 10.1016/S0042-207X(02)00765-0Search in Google Scholar

[3] Shenton M.J., Stevens G.C., Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments, J. Phys. D: Appl. Phys., 2001, 34, 2761. Search in Google Scholar

[4] Schafer J., Foest R., Quade A., Ohl A., Weltmann K.-D., Local deposition of SiOx plasma polymer films by a miniaturized atmospheric pressure plasma jet (APPJ), J. Phys. D: Appl. Phys., 2008. 41, 194010. 10.1088/0022-3727/41/19/194010Search in Google Scholar

[5] Lee J.K., Kim M.S., Byun J.H., Kim K.T., Kim G.C., Park G.Y., Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching, Jap. Jour. Appl. Phys., 2011, 50, 08JF01. 10.1143/JJAP.50.08JF01Search in Google Scholar

[6] Weltmann K.-D., Polak M., Masur K., von Woedtke T., Winter J., Reuter S., Plasmas processes plasma sources in medicine, Contrib. Plasma Phys., 2012, 52, 644-654. 10.1002/ctpp.201210061Search in Google Scholar

[7] Babayan S.E., Jeong J.Y., Tu V.J., Park J., Selwyn G.S., Hicks R.F., Deposition of silicon dioxide films with an atmospheric-pressure plasma jet, Plasma Sources Sci. Technol., 1998, 7, 286-288. 10.1088/0963-0252/7/3/006Search in Google Scholar

[8] Hnilica J., Schafer J., Foest R., Zajickova L., Kudrle V., PECVD of nanostructured SiO2 in a modulated microwave plasma jet at atmospheric pressure, J. Phys. D: Appl. Phys., 2013, 46, 335202. 10.1088/0022-3727/46/33/335202Search in Google Scholar

[9] Lieberman M.A., Lichtenberg A.J., Principles of Plasma Discharges and Materials Processing, 2nd ed., Wiley Interscience, Hoboken, 2005. 10.1002/0471724254Search in Google Scholar

[10] Behle S., Brockhaus A., Engemann J., Time-resolved investigations of pulsed microwave-excited plasmas, Plasma Sources Sci. Technol., 2000, 9, 57-67. 10.1088/0963-0252/9/1/309Search in Google Scholar

[11] Rousseau A., Teboul E., Sadeghi N., Time resolved gas temperature measurements by laser absorption in a pulsed microwave hydrogen discharge, Plasma Sources Sci. Technol., 2004, 13, 166-176. 10.1088/0963-0252/13/1/022Search in Google Scholar

[12] Britun N., Godfroid T., Konstantinidis S., Snyders R., Time-resolved gas temperature evolution in pulsed Ar–N2 microwave discharge, Appl. Phys. Lett., 2011, 98, 141502. 10.1063/1.3576928Search in Google Scholar

[13] van der Horst R.M., Verreycken T., van Veldhuizen E.M., Bruggeman P., Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures, J. Phys. D: Appl. Phys., 2012 45, 345201. 10.1088/0022-3727/45/34/345201Search in Google Scholar

[14] Potocnakova L., Hnilica J., Kudrle V., Increase of wettability of soft- and hardwoods using microwave plasma, Int. J. Adh. Adh., 2013, 45, 125-131. 10.1016/j.ijadhadh.2013.05.003Search in Google Scholar

[15] Hnilica J., Potocnakova L., Stupavska M., Kudrle V., Rapid surface treatment of polyamide 12 by microwave plasma jet, Appl. Surf. Sci., 2014, 288, 251-257. 10.1016/j.apsusc.2013.10.016Search in Google Scholar

[16] Hnilica J., Kudrle V., Time-resolved study of amplitude modulation effects in surface-wave atmospheric pressure argon plasma jet, J. Phys. D: Appl. Phys., 2014, 47, 085204. 10.1088/0022-3727/47/8/085204Search in Google Scholar

[17] Moisan M., Beaudry C., Leprince P., A new HF device for the production of long plasma columns at a high electron density, Physics Letters, 1974, 50A, 125-126. 10.1016/0375-9601(74)90903-7Search in Google Scholar

[18] Hnilica J., Kudrle V., Potocnakova L., Surface treatment by atmospheric-pressure surfatron Jet, IEEE Trans. Plasma Sci., 2012, 40, 2925-2930. 10.1109/TPS.2012.2208767Search in Google Scholar

[19] Griem H.R., Plasma spectroscopy, McGraw-Hill, New York, 1964. Search in Google Scholar

[20] Calzada M.D., Moisan M., Gamero A., Sola A., Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure, J. Appl. Phys., 1996, 80, 46-55. 10.1063/1.362748Search in Google Scholar

[21] Van der Mullen J.A.M., Excitation equilibria in plasmas; a classification, Phys. Rep. 1990, 191, 109-220. Search in Google Scholar

[22] Sainz A., Margot J., Garcia M.C., Calzada M.D., Role of dissociative recombination in the excitation kinetics of an argon microwave plasma at atmospheric pressure, J. Appl. Phys., 2005, 97, 113305. 10.1063/1.1922086Search in Google Scholar

[23] van Gessel A.F.H., Carbone E.A.D., Bruggeman P.J., van der Mullen J.J.A.M., Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering, Plasma Sources Sci. Technol., 2012, 21, 015003. 10.1088/0963-0252/21/1/015003Search in Google Scholar

[24] Calzada M.D., Garcia M., Luque J.M., Santiago I., Influence of the thermodynamic equilibrium state in the excitation of samples by a plasma at atmospheric pressure, J. Appl. Phys., 2002, 92, 2269-2275. 10.1063/1.1492869Search in Google Scholar

[25] Fridman A., Kennedy L.A., Plasma Physics and Engineering, Taylor & Francis, London, 2004. 10.1201/9781482293630Search in Google Scholar

[26] Popa S.D., Vibrational distributions in a flowing nitrogen glow discharge, J. Phys. D: Appl. Phys. 1996, 29, 411-415. Search in Google Scholar

[27] Herzberg G., Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed., Litton Educational Publ., Inc., New York, 1950. Search in Google Scholar

[28] Lofthus A., Krupenie P.H., The spectrum of molecular nitrogen, J. Phys. Chem. Ref. Data, 1997, 6, 113-307. 10.1063/1.555546Search in Google Scholar

[29] Garcia M.C., Yubero C., Calzada M.D., Martinez-Jimenez M.P., Spectroscopic characterization of two different microwave (2.45 GHz) induced argon plasmas at atmospheric pressure, Appl. Spectrosc., 2005, 59, 519-528. 10.1366/0003702053641405Search in Google Scholar

[30] Munoz J., Dimitrijevic M.S., Yubero C., Calzada M.D., Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon–helium microwave plasma at atmospheric pressure, Spectrochim. Acta Part B, 2009, 64, 167-172. 10.1016/j.sab.2008.11.006Search in Google Scholar

[31] Meinel H., Krauss L., Über die besetzung der rotationszustände von oh und C2 in niederdruckplasmen, J. Quant. Spectr. Radiat. Transfer., 1969 9, 443-460. 10.1016/0022-4073(69)90038-7Search in Google Scholar

[32] Christova M., Castanos-Martinez E., Calzada M.D., Kabouzi Y., Luque J.M., Moisan M., Electron density and gas temperature from line broadening in an argon surface-wave-sustained discharge at atmospheric pressure, Appl. Spectrosc., 2004, 58(9), 1032-1037. 10.1366/0003702041959415Search in Google Scholar

[33] Munoz J., Margot J., Calzada M.D., Experimental study of a helium surface-wave discharge at atmospheric pressure, J. Appl. Phys., 2010, 107, 083304. 10.1063/1.3346122Search in Google Scholar

[34] Rodero A., Quintero M.C., Sola A., Gamero A., Preliminary spectroscopic experiments with helium microwave induced plasma produced in air by use of a new structure: the axial injection torch, Spectrochim. Acta Part B, 1996, 51, 467-479. 10.1016/0584-8547(95)01452-7Search in Google Scholar

[35] Cruden B.A., Rao M.V.V.S., Sharma S.P., Meyyappan M., Neutral gas temperature estimates in an inductively coupled CF4 plasma by fitting diatomic emission spectra, J. Appl. Phys., 2002, 91, 8955-8964. 10.1063/1.1474614Search in Google Scholar

[36] Lombardi G., Benedic F., Mohasseb F., Hassouni K., Gicquel A., Determination of gas temperature and C2 absolute density in Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition from the C2 Mulliken system, Plasma Sources Sci. Technol., 2004, 13, 375-386. 10.1088/0963-0252/13/3/003Search in Google Scholar

[37] Mermet J., Inductively coupled plasma emission spectrometry, Part II: Applications and Fundamentals, Wiley-Insterscience, New York, 1987 Search in Google Scholar

[38] Moussounda P.S., Ranson P., Mermet J.M., Spatially resolved spectroscopic diagnostics of argon MIP produced by surface wave propagation (Surfatron), Spectrochim. Acta B, 1985, 40, 641-651. 10.1016/0584-8547(85)80111-7Search in Google Scholar

[39] Ricard A., St-Onge L., Malvos H., Gicquel A., Hubert J., Moisan M., Torche a plasma a excitation micro-onde : deux configurations complémentaires, J. Phys. III, 1995, 5, 1269-1285. 10.1051/jp3:1995185Search in Google Scholar

[40] Gavare Z., Svagere A., Zinge M., Revalde G., Fyodorov V., Determination of gas temperature of high-frequency low-temperature electrodeless plasma using molecular spectra of hydrogen and hydroxyl-radical, J. Quant. Spectrosc. Radiat. Transfer, 2012, 113, 1676-1682. 10.1016/j.jqsrt.2012.04.022Search in Google Scholar

[41] Rincon R., Munoz J., Saez M., Calzada M.D., Spectroscopic characterization of atmospheric pressure argon plasmas sustained with the Torche a Injection Axiale sur Guide d’Ondes, Spectrochim. Acta Part B, 2013, 81, 26-35. 10.1016/j.sab.2012.12.006Search in Google Scholar

[42] Bruggeman P., Schram D.C., Gonzalez M.A., Rego R., Kong M.G., Leys C., Characterization of a direct dc-excited discharge in water by optical emission spectroscopy, Plasma Sources Sci. Technol., 2009, 18, 025017. 10.1088/0963-0252/18/2/025017Search in Google Scholar

[43] Bruggeman P., Degroote J., Vierendeels J., Leys C., Plasma characteristics in air and vapor bubbles in water, In: J. Schmidt, M. Simek, S. Pekarek, V. Prukner (Ed.), Proceedings of 28th International Conference on Phenomena in Ionized Gases (15-20 July 2007, Prague, Czech Republic), Institute of Plasma Physics AS CR Prague, 2007, 859-862. Search in Google Scholar

[44] Mezei P., Cserfalvi T., Csillag L., The spatial distribution of the temperatures and the emitted spectrum in the electrolyte cathode atmospheric glow discharge, J. Phys. D.: Appl. Phys., 2005, 38, 2804. Search in Google Scholar

[45] Mezei P., Cserfalvi T., Electrolyte cathode atmospheric glow discharges for direct solution analysis, Appl. Spectrosc. Rev., 2007, 42, 573-604. 10.1080/05704920701624451Search in Google Scholar

[46] Mezei P., Cserfalvi T., A critical review of published data on the gas temperature and the electron density in the electrolyte cathode atmospheric glow discharges, Sensors, 2012, 12, 6576-6586. 10.3390/s120506576Search in Google Scholar PubMed PubMed Central

Received: 2014-1-16
Accepted: 2014-5-29
Published Online: 2014-12-22

© 2015 Jaroslav Hnilica et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow