Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 22, 2014

Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

  • András Tóth , Klára Szentmihályi , Zsófia Keresztes , Imola Szigyártó , Dusan Kováčik , Mirko Černák and Kinga Kutasi
From the journal Open Chemistry

Abstract

An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE) samples, which are subsequently coated with polyvinylpyrrolidone (PVP) and tannic acid (TAN) single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Atomic Force Microscopy (AFM). The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.

References

[1] Huck W.T.S., Artificial skins: hierarchical wrinkling, Nat. Mater., 2005, 4, 271 10.1038/nmat1356Search in Google Scholar

[2] Kidane A.G., Salacinski H., Tiwari A., Bruckdorfer K.R., Seifalian A.M., Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces, Biomacromolecules, 2004, 5, 798 10.1021/bm0344553Search in Google Scholar

[3] Noh J.H., Baik H.K., Noh I., Park J.-C., Lee I.-S., Surface modification of polytetrafluoroethylene using atmospheric pressure jet for medical application Surf. Coat. Technol., 2007, 201, 5097 10.1016/j.surfcoat.2006.07.223Search in Google Scholar

[4] Dupuy F.P., Savoldelli M., Robert A.M., Robert L., Legeais J.M., Renard G.J.J., Chemotactic penetration of keratocytes in ePTFE polymer in vitro, J. Biomed. Mater. Res., 2001, 56, 487 10.1002/1097-4636(20010915)56:4<487::AID-JBM1120>3.0.CO;2-#Search in Google Scholar

[5] Helmus M.N., Hubbell J.A., Materials selection, Cardiovasc Pathol (Suppl) 1993, 2, 53S 10.1016/1054-8807(93)90047-6Search in Google Scholar

[6] Lutolf M.P., Hubbell J.A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue, Nat. Biotechnol. 2005, 23 (1), 47 10.1038/nbt1055Search in Google Scholar

[7] Fischbach C., Mooney D.J., Polymers for pro- and anti-angiogenic therapy, Biomaterials, 2007, 28 (12), 2069 10.1016/j.biomaterials.2006.12.029Search in Google Scholar

[8] Ding X., Yang Ch., Lim T.P., Hsu L.Y., Engler A.C., Hedrick J.L., Yang Y.-Y., Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers, Biomaterials, 2012, 33, 6593 10.1016/j.biomaterials.2012.06.001Search in Google Scholar

[9] Mrad O., Saunier J., Chodur C.A., Rosilio V., Agnely F., Aubert P., Vigneron J., Etcheberry A., Yagoubi N., A comparison of plasma and electron beam-sterilization of PU catheters, Radiation Physics and Chemistry, 2010, 79, 93 10.1016/j.radphyschem.2009.08.038Search in Google Scholar

[10] N. Aumsuwan, S.-H. Ye, W.R. Wagner, M.W. Urban, Covalent attachment of multilayers on poly(tetrafluoroethylene) surfaces, Langmuir 2011, 27, 11106 10.1021/la201957aSearch in Google Scholar

[11] Wang Z.G., Wan L.S., Xu Z.K., Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: an overview, J. Membr. Sci., 2007, 304, 8 10.1016/j.memsci.2007.05.012Search in Google Scholar

[12] Zhu Y.B., Gao C.Y., Liu X.Y., Shen J.C., Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells, Biomacromolecules, 2002, 3, 1312 10.1021/bm020074ySearch in Google Scholar PubMed

[13] Noh J.H., Baik H.K., Noh I., Park J.-C., Lee I.-S., Surface modification of polytetrafluoroethylene using atmospheric pressure jet for medical application, Surf. Coat. Technol., 2007, 201, 5097 10.1016/j.surfcoat.2006.07.223Search in Google Scholar

[14] Fang Z., Hao L., Yang H., Xie X., Qiu Y., Edmund K., Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air, Appl. Surf. Sci., 2009, 255, 7279 10.1016/j.apsusc.2009.03.078Search in Google Scholar

[15] Kereszturi K., Tóth A., Mohai M., Bertóti I., Szépvölgyi J., Nitrogen plasma-based ion implantation of poly(tetrafluoroethylene): Effect of the main parameters on the surface properties, Appl. Surf. Sci., 2010, 256, 6385 10.1016/j.apsusc.2010.04.021Search in Google Scholar

[16] Haaf F., Sanner A., Straub F., Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses, Polymer J. 1985, 17, 143 10.1295/polymj.17.143Search in Google Scholar

[17] Folttmann H., Quadir A., Polyvinylpyrrolidone (PVP) One of the Most Widely UsedExcipients in Pharmaceuticals: An Overview, Drug Delivery Technol., 2008, 8, 22 Search in Google Scholar

[18] Akiyama H., Fujii K., Yamasaki O., Ono T., Iwatsuki K., Antibacterial action of several tannins against Staphylococcus aureus, J. Antimicrob. Chemother., 2011, 48, 487 10.1093/jac/48.4.487Search in Google Scholar PubMed

[19] Kolodziej H., Kiderlen A. F., Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells, Phytochem., 2005, 66, 2056 10.1016/j.phytochem.2005.01.011Search in Google Scholar PubMed

[20] Akagawa M., Suyama K., Amine oxidase-like activity of polyphenols. Mechanism and properties, Eur. J. Biochem., 2001, 268, 1953 10.1046/j.1432-1327.2001.02068.xSearch in Google Scholar PubMed

[21] Erel-Unal I., Sukhishvili S.A., Hydrogen-bonded Multilayers of a Neutral Polymer and a Polyphenol, Macromol., 2008, 41, 3962 10.1021/ma800186qSearch in Google Scholar

[22] Kozlovskaya V., Kharlampieva E., Drachuk I., Cheng D., Tsukruk V.V., Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies, Soft Matter, 2010, 6, 3596 10.1039/b927369gSearch in Google Scholar

[23] Kim B.S., Lee H., Min Y.H., Poon Z., Hammond P.T., Hydrogen-bonded multilayer of pH-responsive polymeric micelles with tannic acid for surface drug delivery, Chem. Commun., 2009, 28, 4194 10.1039/b908688aSearch in Google Scholar PubMed PubMed Central

[24] D.J. Schmidt, P.T. Hammond, Electrochemically erasable hydrogen-bonded thin films, Chem. Commun., 2010, 46, 7358 10.1039/c0cc02346aSearch in Google Scholar PubMed

[25] Šimor M., Ráhel J., Vojtek P., Brablec A., Cernák M., Atmospheric-pressure diffuse coplanar surface discharge for surface treatments, Appl. Phys. Lett., 2002, 81, 2716 10.1063/1.1513185Search in Google Scholar

[26] Cernák M., Cernáková L., Hudec I., Kovácik D., Zahoranová A., Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, Eur. Phys. J. Appl. Phys., 2009, 47, 22806 10.1051/epjap/2009131Search in Google Scholar

[27] Cernák M., Kovácik D., Ráhel J., Stahel P., Zahoranová A., Kubincová J., Tóth A., Cernáková L., Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing, Plasma Phys. Control. Fusion, 2011, 53, 124031 10.1088/0741-3335/53/12/124031Search in Google Scholar

[28] Vesel A. and Mozetic M., Surface functionalization of organic materials by weakly ionized highly dissociated oxygen plasma, Journal of Physics: Conference Series, 2009, 162, 012015 10.1088/1742-6596/162/1/012015Search in Google Scholar

[29] Gerenser L.J., Surface Chemistry of Plasma-Treated Polymers, in Handbook of Thin Film Process Technology, ed D A Glocker and S I Shah (IOP, Bristol), 1996 Search in Google Scholar

[30] Zhou L., Chen M., Tian L., Gian Y., Zhang Y., Release of Polyphenolic Drugs from Dynamically Bonded Layer-by-Layer Films, Appl. Mater. Interfaces, 2013, 5, 3541 10.1021/am4008787Search in Google Scholar PubMed

Received: 2014-2-12
Accepted: 2014-5-7
Published Online: 2014-12-22

© 2015 András Tóth et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.12.2023 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0072/html
Scroll to top button